
Computational Aspects of Treewidth
———————————————————————————————————

Lower Bounds and Network Reliability

Computational Aspects of Treewidth
———————————————————————————————————

Lower Bounds and Network Reliability

Computationele Aspecten van Boombreedte
Ondergrenzen en Betrouwbaarheid van Netwerken

(met een samenvatting in het Nederlands)

Proefschrift ter verkrijging van de graad van doctor aan de Universiteit
Utrecht op gezag van de Rector Magnificus, Prof. Dr. W. H. Gispen,
ingevolge het besluit van het College voor Promoties in het openbaar
te verdedigen op maandag 13 juni 2005 des middags te 12.45 uur door

Thomas Wolle

geboren op 29 oktober 1975 te Gera

promotor: Prof. Dr. Jan van Leeuwen
Faculty of Science
Utrecht University

copromotor: Dr. Hans L. Bodlaender
Faculty of Science
Utrecht University

The work in this thesis (IPA Dissertation series number 2005-09) has been carried out
under the auspices of the research school IPA (Institute for Programming research and
Algorithmics). This research was partially supported by EC contract IST-1999-14186:
Project ALCOM-FT (Algorithms and Complexity - Future Technologies) and partially
by the Netherlands Organisation for Scientific Research NWO (project Treewidth and
Combinatorial Optimisation).

Printed by Ridderprint offsetdrukkerij B.V.

ISBN 90-393-3972-4

Copyright c© Thomas Wolle, 2005

Contents

Preface . 1

1 Introduction . 3
1.1 Treewidth . 4
1.2 Motivation . 7
1.3 Thesis Outline . 9

2 Preliminaries . 11
2.1 General . 11
2.2 Edge Contraction . 12
2.3 Subgraphs and Minors . 17
2.4 Treewidth . 18
2.5 Subdividing an Edge . 19

3 Treewidth Lower Bounds: Methods, Relations and Complexity . 21
3.1 Contraction Degeneracy and Related Lower Bounds . 21

3.1.1 Definition of the Parameters . 22
3.1.2 Relationships Between the Parameters . 23
3.1.3 NP -completeness Results . 26
3.1.4 Fixed Parameter Case of CONTRACTION DEGENERACY 33
3.1.5 On the Contraction Degeneracy . 35
3.1.6 Graphs of Genus γ . 39

3.2 Maximum Cardinality Search Lower Bound . 44
3.2.1 MCS Treewidth Lower Bound with Contraction . 45
3.2.2 NP -completeness . 45
3.2.3 Fixed Parameter Case . 48

3.3 Improved Graphs Might Improve Lower Bounds . 48
3.4 Concluding Remarks . 49

4 Treewidth Lower Bounds: Algorithms, Heuristics and Experiments 51
4.1 A Bucket Adjacency-List Data Structure . 51
4.2 Exact Algorithms for Some Treewidth Lower Bounds . 55

4.2.1 Algorithms for δ, δ2 and δD . 55
4.2.2 Algorithms for γR . 55
4.2.3 An Algorithm for δ2D . 56

VI Contents

4.3 Heuristics . 57
4.3.1 δC-Heuristics . 57
4.3.2 δ2C-Heuristics . 61
4.3.3 γRD-Heuristics . 61
4.3.4 γRC-Heuristics . 62
4.3.5 MCSLB and MCSLBC-Heuristics . 62
4.3.6 LBN and LBP Heuristics . 62

4.4 Experiments . 65
4.4.1 Experimental Setup and Input Graphs . 66
4.4.2 Results for δ, δ2, γR, δD, δ2D and γRD . 66
4.4.3 Results for δC . 67
4.4.4 Results for δ2C and γRC . 68
4.4.5 Results for MCSLB and MCSLBC . 68
4.4.6 Results for the LBN and LBP Heuristics . 69

4.5 Concluding Remarks . 70

5 Contraction Degeneracy on Cographs . 73
5.1 Cographs . 73
5.2 Computing Contraction Degeneracy . 74

5.2.1 A Recurrence Relations for 0-nodes . 76
5.2.2 A Recurrence Relations for 1-nodes . 77
5.2.3 The Dynamic-Programming Method . 82

5.3 Concluding Remarks . 83

6 Network Reliability: Model, Problems and Complexity . 85
6.1 The Classical Network Reliability Problems . 85
6.2 Our Network Reliability Problems . 86

6.2.1 Our Graph-theoretical Model . 86
6.2.2 Edge Failures vs. Vertex Failures . 86
6.2.3 A List of Network Reliability Problems . 87

6.3 Complexity of Network Reliability Problems . 87
6.3.1 Complexity Theory Background . 88
6.3.2 #P ′-membership . 89
6.3.3 #P ′-hardness . 91
6.3.4 Computing the Numerators of Probabilities . 94

6.4 Concluding Remarks . 94

7 Network Reliability: Graphs of Bounded Treewidth . 97
7.1 A General Technique . 98

7.1.1 Specific Definitions . 98
7.1.2 Description of the Technique . 101
7.1.3 Repairing Representatives . 101
7.1.4 Computation of the Representatives and their Probability 102

7.2 The Framework and Equivalence Classes . 106
7.2.1 Properties of Solvable Network Reliability Problems . 106
7.2.2 Reducing the Number of Representatives . 108
7.2.3 Information Content of Equivalence Classes . 109

Contents VII

7.2.4 Conditions for Using Equivalence Classes . 109
7.2.5 The Correctness of the Algorithm for Classes . 111

7.3 Problems that Fit into this Framework . 114
7.3.1 Solvable Problems . 114
7.3.2 Generating Relations . 115
7.3.3 Running Times of Generated Relations . 122
7.3.4 Combining Relations . 125

7.4 Example of an Extension . 127
7.5 Concluding Remarks . 129

References . 131

Acknowledgements . 137

Samenvatting . 139

Curriculum Vitae . 143

Titles in the IPA Dissertation Series . 145

Preface

If I remember correctly, it was on Thursday, 4 January 2001, when the supervisor of my diploma
thesis told me about a PhD-student position in Utrecht. One and a half months later, I applied for
this position, and in March 2001 I was invited for an interview, which resulted in a positive outcome.
After that, it still took me a couple of weeks to make up my mind whether or not I should go to
Utrecht. It would be a big step for me, after growing up in a one-horse-village with around six hundred
inhabitants, to move to such an incredibly world-famous metropolis as Utrecht. Now four years later,
you know about my decision, and you hold a proof in your hands that these years have been successful
at least to some extent. Of course there were days when I was thinking that the whole world turned
against me, but looking back there was not a single day when I seriously regretted my decision to come
to The Netherlands. I can say that during my time in Utrecht, I learned more about life in general than
about science. However, this does not mean that I did not learn anything scientific.

Already before I started writing this thesis, I thought that writing the section where I say ‘thank
you’ for personal matters would be one of the most difficult ones. Not because saying ‘thank you’ is so
difficult, but because of the difficulties of adequately distributing my big ‘THANK YOU’, and because
of the well-known ‘thank you’ paradox, which is: the more persons and details one mentions, the
higher the probability that one forgets someone. Therefore, I would like to thank everyone who made
the last four years possible as an enjoyable and successful time. Thanks to all those who accompanied,
supported and encouraged me through these interesting years. However, to make it a bit more personal
after all, I mention some groups of people rather than individuals (multiple occurrences of persons are
possible). I would like to thank my colleagues (this also includes former colleagues, office-mates
and student-assistants), all the girls and guys from UFC (‘Sticky Fingers’) Utrecht and the Neutel-
voetballers (or Neutel-hoopsters). A very big thank you goes to my foreign friends, my Dutch friends,
my friends in Germany and of course my family.

Utrecht, April 2005 Thomas Wolle

1

Introduction

Graphs are an essential part of many systems. They are used for representing and modelling the struc-
ture of data, systems, scenarios, projects and much more. On these abstract models, scientists try to
solve problems relevant for the underlying real-world situation. Solving problems often means find-
ing a strategy to manipulate the data that leads to an efficient algorithm. It can also mean constructing
an algorithm to optimise some value based on the input. See e.g. [35] and [53] for an introduction
to algorithms and to graph theory. An algorithm is considered to be efficient if its running time for
solving a problem grows polynomially in the size of the input (the number of bits needed to denote
the input). However, there are many practically relevant problems (see e.g. [49, 74]) for which such
efficient algorithms are not known – they might not even exist. These problems appear to possess an
inherent hardness. One form of computational hardness is derived from the theory of nondeterministic
polynomial-time computability and is called NP -hardness, see [49] for more details on this theory.
Currently, there are no NP -hard problems for which a polynomial-time algorithm is known, and
many scientists expect that no NP -hard problem has such a polynomial-time algorithm (see e.g. [56,
Remark 10.2]).

In the real world it is not possible to restrict the classes of problems to be solved to those hav-
ing an efficient algorithm. We have to face NP -hardness. In the course of time, several approaches
were developed to cope with NP -hard problems. One way of solving an NP -hard problem is to
use an algorithm (e.g. based on backtracking or branch-and-bound) that enumerates and evaluates
all possible solution-candidates. Such methods are usually considered to be inefficient, because they
have exponential or super-exponential running times. Another way to cope with NP -hardness is to
use approximation algorithms and/or heuristics. Approximation algorithms are by definition efficient
algorithms, for which it is possible to prove that the results they give are always close to the opti-
mum solutions. For heuristics, we do not have such a proof. Experiments can be used to estimate the
quality (and running times) of heuristics and approximation algorithms. It is also possible to tackle
NP -hard problems from yet a different angle. If we can enforce or ensure that our instances have a
certain property, i.e. if the input graph belongs to a special graph class (see [26] for a survey on graph
classes), then it might be possible to take advantage of that property when attempting to design an
efficient algorithm for solving a hard problem. The property of a graph to be a tree helps very much
algorithmically, in the sense that many hard problems are easy on trees. However, often enough, we
have to deal with more complicated graphs. One possibility to generalise or to extend the property of
a graph to be a tree is captured by the notion of ‘treewidth’. The treewidth of a graph is a parameter
that, vaguely spoken, indicates the similarity of the graph to a tree. The smaller the treewidth of a
graph the more tree-like it is. It turns out that the easiness of many problems on trees (that are hard on

4 1 Introduction

general graphs) carries over to graphs with small treewidth. These graphs will be the central theme in
this thesis.

1.1 Treewidth

Informal Description

About twenty years ago, Robertson and Seymour introduced the notions tree-decomposition, treewidth
and graphs of bounded treewidth [79, 80]. Other notions had been developed, which are equivalent to
graphs of bounded treewidth, e.g. partial k-trees (see [85]). Nowadays, the terminology introduced by
Robertson and Seymour is most frequently used.

Since their introduction these notions have received a growing interest, both from the theoretical
and from the practical point of view. To simplify the following informal description of the relevant
terms, we assume that there is a path between any pair of vertices in our original graph G, i.e. we
assume our graph is connected. Most of the times solving problems on disconnected graphs means
solving a problem on each connected component, and hence, this can be interpreted as only consider-
ing connected graphs. The graph parameter treewidth is defined using the notion tree-decomposition.
A tree-decomposition consists of a tree T and a set of subsets of vertices of the graph G, where one
subset is associated to every node (or vertex) of T . A tree-decomposition represents the structure of
the graph G. In particular, to construct a tree-decomposition we

• ‘group’ the vertices of G together to form ‘bags’ (these bags are sometimes called ‘supernodes’;
each bag is a subset of the vertices of G) and

• connect these bags to form a rooted tree T (the bags play the role of vertices of the tree T).

Note that the bags do not have to be disjoint, i.e. there might be vertices of the graph contained in
more than one bag. This grouping and connecting has to be done in such a way that

• for all edges e of the graph: there exists a bag containing both endpoints of edge e, and
• for all vertices v of the graph: all bags containing v together with the edges between those bags in

T form a connected subtree of T .

The width of a tree-decomposition is the number of graph-vertices of a largest bag minus 1. The
treewidth of a graph G is the smallest possible width over all tree-decompositions of G. Section 2.4
provides a formal definition of tree-decomposition and treewidth, and Figure 2.4 depicts a tree-
decomposition of the graph in Figure 2.1. Graphs of bounded treewidth are graphs whose treewidth is
bounded from above by some constant k. They are also called partial k-trees (see e.g. [11] for more
related notions).

Trees vs. Tree-decompositions

One reason why many problems that are hard in general are easy on trees is that trees do not contain
cycles. When solving a problem on a tree it is often possible to make ‘local’ decisions for a vertex
or for a subtree. These local decisions might influence the decisions that have to be made in another
part of the tree. However, they will be ‘propagated’ to these other parts via a single unique path, since
there are no cycles. Hence, the effect of local decisions to another part of the tree can be captured by
information concerning only one path.

Another way of describing this issue is to use separators. A separator is a set of vertices whose
removal from the graph (including the removal of the edges connected to the removed vertices) results

1.1 Treewidth 5

in a disconnected graph (see e.g. [51, 53] for more formal definitions). The set {b, e} is a separator of
the graph in Figure 2.1. Thus, each internal vertex in a tree, i.e. a vertex connected to more than one
edge in a tree, is a separator.

Very often it is easier to solve problems on a graph by decomposing the graph into smaller com-
ponents, solving the corresponding (sub)problems on the smaller components and combining the so-
lutions of the subproblems to a solution of the original problem. In this process separators play the
role of the interface between two (or more) components of the graph. It turns out that the size of the
separator often determines the number of solutions to the (sub)problems; and in turn this number de-
termines the algorithmic running time when using this approach to solve the problem computationally.
In many cases the running time is exponential in the size of the separator. However, as each internal
vertex of a tree is a separator of size one, many problems are solvable very efficiently on trees.

One way of interpreting the notion of a tree-decomposition of width k is to understand it as an
organised representation of separators of size at most k + 1, because the vertices of each bag can be
shown to be a separator. Using these separators of size at most k + 1, we can iteratively decompose
the graph into smaller components until we have components with at most k + 1 vertices.

Dynamic Programming with Tree-decompositions

A different approach to describe, how tree-decompositions are used to solve problems involves dy-
namic programming (see [36] for more details on this algorithm design paradigm). Let us assume we
are given a tree-decomposition of graph G. Since this tree-decomposition is represented as a rooted
tree T , the ancestor/descendant relation is well-defined. We can associate to each bag X the subgraph
of G made up by the vertices in X and all its descendant bags, and all the edges between those ver-
tices. Starting at the leaves (the nodes with no descendants), we can compute information typically
stored in a table, in a bottom-up manner for each bag until we reached the root. This information is
sufficient to solve the subproblem for the corresponding subgraph. To compute the table for a node
of the tree-decomposition, we only need the information stored in the tables of the children (i.e. di-
rect descendants) of this node. This is typical for dynamic programming. The problem for the entire
graph can then be solved with the information stored in the table of the root of T . This approach is
explained much more elaborately in [8, 10]. Often the size of the tables is exponential in the width of
the tree-decomposition used, which in turn is crucial for the running times to compute these tables. We
therefore would like to use tree-decompositions of width as small as possible. The smallest possible
width is the treewidth of the graph and is NP -hard to compute in general.

Computing Tree-decompositions

Despite the fact that computing the treewidth is NP -hard [1], much work has been done on practical
algorithms for determining the treewidth of graphs.

In [9], an algorithm is given that decides whether the treewidth of a graph G is at most k (if
k is a constant and not a part of the input to the problem) and if so, outputs a corresponding tree-
decomposition. The algorithm’s running time is linear in the size of G, but it has a very large constant
factor at least exponential in k. Therefore, this algorithm is not applicable in practice (unless k is
known to be very small) for finding the treewidth (see also [84]). A more practical exact method is pre-
sented in e.g. [89]. Recently, an exact branch-and-bound algorithm was given in [50]. Another method
to progress towards tree-decompositions of small width is based on preprocessing. Such methods ap-
ply certain rules for stepwise reducing the graph. If no rules can be applied anymore, exact methods
have to be used on the (much) smaller graph, which give a tree-decomposition of the smaller graph.

6 1 Introduction

Because during the entire process the optimality of the solution is preserved, this tree-decomposition
can then be extended to one of the original graph by undoing the reductions. See [15, 16, 46] for
more details. Tree-decompositions can also be computed using heuristic methods. This will in general
not yield tree-decompositions of minimum width, however. For the problem at hand the heuristically
computed tree-decomposition might be applicable, if its width is small enough for practical purposes.
These heuristics always give an upper bound on the treewidth. More details on such upper bound
heuristics can be found in e.g. [32, 31, 63, 62, 5, 50].

In many cases, exact methods are too slow, and for many instances, there are large gaps between the
bounds given by upper bound and lower bound heuristics. Thus, the study of algorithms and heuristics
for treewidth is highly interesting also from a practical point of view.

Applications

Exploiting tree-decompositions of graphs is possible in many areas, including VLSI layout, mathe-
matics, expert systems, evolution theory and natural language processing (see [8] for more details).
Also, most existing programmes (or better: their control flow graphs) have small treewidth if they
are structured (e.g. if they are ‘goto-free’). By using this property, they allow efficient automatic
static analysis for many well-known problems, such as register allocation (see [92] for programming
languages like C or Pascal and [28] for programmes in Ada). In the frequency assignment prob-
lem [62, 64] for cellular wireless networks, it has been shown that dynamic-programming algorithms
with tree-decompositions can also be used in practice to compute the optimal solution.

From a theoretical point of view, there are very interesting results on graphs of bounded treewidth.
These results state that each graph problem that can be expressed by a formula using certain language
constructions, can be solved in linear time on graphs of bounded treewidth. This logic language is
called Monadic Second Order Language (MSOL), see among others [39, 40], and e.g. [2, 25] for
extensions of it. However, even if the running time is linear from a theoretical point of view, these
methods often result in very large constant factors hidden in the big O-notation.

One practical application that we will consider in more detail concerns probabilistic networks.
These networks are also called (Bayesian) belief networks and are used in decision support systems
and expert systems. Informally, decision support systems are systems that take as input a set of facts
or observations (e.g. symptoms of a patient), and after probabilistic inference, they give an output that
can be used to make a decision concerning the current situation (e.g. make a diagnosis of a patient).
A probabilistic network consists of directed acyclic graph, where each vertex represents a statistical
variable that can take one of finitely many values. Dependences and independences of the variables
are modelled by the directed edges of the acyclic directed graph. An arc (i.e. a directed edge) from
vertex u to vertex v in the directed graph means that the state of vertex u causes a direct effect on
vertex v. Associated with each vertex v is a function which is a set of (conditional) probabilities. This
function describes the influence of all vertices that have an arc to vertex v on the probabilities of the
value of the vertex v. Altogether this represents a joint probability distribution. See e.g. [58] for more
details on probabilistic networks.

Computing the conditional probabilities of all vertices in a probabilistic network is called prob-
abilistic inference, a problem that is NP -hard in general [34]. One of the best known algorithms
(see [95]) for probabilistic inference is the algorithm by Lauritzen and Spiegelhalter [68]. This algo-
rithm takes an undirected triangulated moral graph G′ of the directed graph G as input. The moral
graph of G is the underlying undirected graph of G augmented by edges between any pair of vertices
u and w such that there are arcs from u to v and from w to v in G for a vertex v. Based on this moral
graph ofG, a triangulationG′ of it has to be made, i.e. by adding further edges, such that every simple

1.2 Motivation 7

cycle of length at least 4 possesses a chord (an edge joining two nonconsecutive vertices on the cycle).
For us it is important that Lauritzen and Spiegelhalter’s algorithm has computational complexity of
O(n · 2c), where n is the number of vertices of G and c is the size of a largest clique in G′. Finding
a triangulation G′ of the moral graph of G with a maximum clique size that is as small as possible
is equivalent to the problem of finding a tree-decomposition of the moral graph of G with width as
small as possible. Lauritzen and Spiegelhalter’s algorithm solves the probabilistic inference problem
by dynamic programming with the triangulated graph G′. In other words, this algorithm solves the
probabilistic inference problem using a tree-decomposition of the moral graph of G.

1.2 Motivation

Using Tree-decompositions

Since computing the treewidth is NP -hard, it is rather unlikely to find efficient algorithms for com-
puting the treewidth or a tree-decomposition of smallest possible width. One could ask now ‘What
do we gain if we use dynamic programming with a tree-decomposition to solve an NP -hard prob-
lem, while computing the treewidth is NP -hard?’ This reasonable question can be answered in the
following ways.

First of all, it might be that we have a very specific problem such that the underlying graph has
small treewidth. For instance, we may have a telecommunications network that is rather sparse to
reduce its cost. Hence, its treewidth could be suitably small. Perhaps it is even the case that our
specific application uses graphs that are already represented by a tree-decomposition of (close to)
minimum width. In such a case, we do not have to compute a tree-decomposition ourself, but instead
we are given it. Then we can directly concentrate on the design of an algorithm to solve the particular
problem.

Another reason for using the approach of dynamic programming with tree-decompositions is the
reusability of tree-decompositions. It might be worth to spend much running time to find a tree-
decomposition of width as small as possible, because we can use this tree-decomposition multiple
times. Computing the treewidth or tree-decompositions with (close to) optimal width of a probabilistic
network is such an example. It is sensible to spend much time on computing a tree-decomposition of
small width of a moral graph of a probabilistic network’s directed graph. As we have seen above, the
smaller the width of this tree-decomposition, the faster the probabilistic inference. Once we have a
tree-decomposition of (close to) optimal width, we can solve the probabilistic inference problem many
times for different situations (e.g. for different patients, if we consider a medical decision support
system).

Furthermore, computing a tree-decomposition of minimum width (which is NP -hard) might not
be necessary. As mentioned earlier, if an upper bound method computing a tree-decomposition gives
a result that is good enough, we do not need to find an optimal tree-decomposition. This means that
we do not have to compute the treewidth, if our dynamic-programming method with the heuristically
obtained tree-decomposition has a running time that is fast enough for our purposes.

Even if all criterias above do not apply to our current situation, it is possible to spend much time on
computing a tree-decomposition of minimum width and applying dynamic programming. However,
deciding whether this is worth doing it, heavily depends on the considered problem. An example of
this situation is the work in [62].

8 1 Introduction

Treewidth Lower Bounds

Lower bounds for treewidth are examined in e.g. [14, 32, 70, 77] and Chapters 3 and 4. They are
useful for a couple of reasons.

As mentioned earlier, the running times of dynamic-programming algorithms with tree-decomposi-
tions of minimum width are often exponential in the treewidth of the graph. Hence, treewidth lower
bounds are useful for estimating the running times of such methods. A large lower bound on the
treewidth of a graph implies that there is little hope for an efficient dynamic-programming algorithm
based on a tree-decomposition of that graph. To apply this reasoning, we need the running times of
our dynamic-programming algorithm, i.e. we need the size of the tables used for this approach. This
size depends on our skill to design efficient algorithms, on the problem itself and on the width of the
used tree-decomposition. However, we do not need to compute such a tree-decomposition.

We also mentioned earlier that hard problems can be solved with backtracking. Computing the
treewidth of a graph is such a hard problem. Backtracking means systematically constructing all solu-
tion candidates. This construction process can be represented by a computation-tree. If we have good
lower and upper bounds on the treewidth, we can use branch-and-bound which cuts out branches of
the computation-tree as soon as we know that we will not find a good solution in this branch. The
better the bounds, the bigger the branches that can be pruned in a branch-and-bound method, and
therefore, the smaller the running times. Hence, good treewidth lower bounds can be utilised to de-
crease the running time of branch-and-bound algorithms. Research on this approach has been carried
out in e.g. [50].

In addition, lower bounds in connection with upper bounds help to assess the quality of these
bounds. If these bounds are close to each other then we have a good approximation of the optimum.
Of course, it would be best, if the lower bound equals the upper bound. In that case, we found the
optimum. However, if the gap between lower and upper bound is very big, we know that at least one
of these bounds is not very sharp on the graph under consideration.

Of course, apart from previous motivations based on practical issues, treewidth lower bounds are
an interesting and fascinating topic purely from the theoretical point of view.

Work on treewidth lower bounds is reported in Chapters 3-5.

Network Reliability

Most of us have been in contact with an information or communication network, such as the Internet,
a local area network or the plain old telephone system. Small local area networks are often designed in
a tree structure, because this is the cheapest way of connecting a set of communicating sites, i.e. com-
puters. The disadvantage of networks with a tree structure is that if a single connection between two
sites breaks down, then communication between any sites belonging to the two different connected
components is not possible anymore. In the Internet for example, this problem was overcome by using
more links. Hence, if one link breaks down, it usually is still possible to find a path between two given
sites in the network along which to communicate.

The reliability of a network measures its quality in the following sense. The higher the probability
that communication in the network is still possible after some of its parts (e.g. links, switches or
routers) break down, the higher the reliability of the network. Clearly, the reliability of networks is
of great importance, since networks are an essential part of current information and communication
technology. While the networks in many areas grow rapidly, specialists designing and maintaining
them must be able to determine the reliability of a given network or of one to be constructed.

Hence, we would like to solve the problem to compute its reliability, for any given network with
probabilities of its elements of breaking down. Also, several variants of the notion of reliability are

1.3 Thesis Outline 9

of interest, e.g. computing the probabilities that a given pair of vertices still can communicate with
each other. Unfortunately, many such questions are NP -hard. In Chapters 6 and 7, we study network
reliability and variants on general graphs and graphs of bounded treewidth.

1.3 Thesis Outline

In Chapter 2, we state basic terminology. We also formally define the terms treewidth, tree-decomposi-
tion and minor, and we elaborate on the notions of edge-contraction and edge-subdivision.

Chapter 3 is devoted to methods for computing treewidth lower bounds. We consider three ap-
proaches to obtain or improve such bounds. The first one is based on the degeneracy of a graph (max-
imum over all subgraphs of the minimum degree), which is known to be a treewidth lower bound. The
second approach uses Lucena’s treewidth lower bound [70] based on Maximum Cardinality Search.
This research leads to a number of parameters that are treewidth lower bounds. We examine relations
between these parameters and their computational complexity. The last approach for obtaining and
improving treewidth lower bounds is based on a technique introduced by Clautiaux et. al [32]. We
combine all these methods with edge-contraction and see that this is an excellent way for improving
upon existing treewidth lower bounds.

Some of the treewidth lower bounds that we will consider in Chapter 3 are exactly computable
in polynomial time. For these parameters, we develop algorithms for computing them in Chapter 4.
Other parameters are NP -hard to compute, and hence, we propose some heuristics to compute lower
bounds for these parameters. We also experimentally evaluate these algorithms and heuristics. At
the beginning of Chapter 4, we examine a data structure that can be used in some of the considered
algorithms and heuristics.

One of the parameters that will be defined in Chapter 3 is the contraction degeneracy. It combines
the degeneracy with edge-contraction (or minors). Due to its elementary definition, this parameter
appears to be an attractive object of study in its own, and not only as a treewidth lower bound. Com-
puting the contraction degeneracy is NP -hard on general graphs. That is why we look at a special
graph class, namely cographs, in Chapter 5. There we develop a polynomial time algorithm for com-
puting the contraction degeneracy on cographs.

A model for network reliability problems is consider in Chapter 6. Based on this model, we give
a list of relevant network reliability problems. We analyse the computational complexities of these
problems, which involves the definition of a complexity class #P ′ as an extension to #P . We show
the listed network reliability problems to be #P ′-complete, by giving a membership-proof and a
transformation from a known #P ′-hard problem. At the start of Chapter 6, we consider some classical
network reliability problems.

Since in Chapter 6 we prove some network reliability problems to be #P ′-complete, we look at
how to solve these problems on a special graph class in Chapter 7. There, we develop a framework
that can be used to solve these network reliability problems (most of the times efficiently) on graphs of
bounded treewidth. With the framework we can answer questions that ask for the probability that there
is a connection between vertices of two distinguished sets of vertices. As an example, we might have
a set of servers and a set of clients. Then we can ask the question: ‘What is the probability that each
client is connected to at least one server?’ Among others, this question can be answered efficiently on
graphs of bounded treewidth.

2

Preliminaries

This chapter covers the basic terminology that we will be using throughout this thesis. We start
with general terms and concepts. Most of this is standard graph theory/algorithm terminology. We
also elaborate on the notion of edge-contraction. We explain subgraphs and minors, we define tree-
decompositions and treewidth, and we elucidate subdivisions. Part of this chapter is adapted from
cooperation [98] with Hans L. Bodlaender.

2.1 General

A directed graph G is a pair consisting of a finite set of vertices V (G) and a multiset of edges E(G).
Each edge e ∈ E(G) is an ordered pair of vertices, i.e. e ∈ V × V . Each pair f ∈ V × V with
f 6∈ E(G) is a nonedge. The two vertices that are joined by an edge are called the endpoints of the
edge. An edge e ∈ E(G) is undirected, if e is a two-element multiset of vertices rather than a pair
of vertices. A graph G is undirected if all its edges are undirected. Graph G is simple if it has neither
self-loops (i.e. edges with only one endpoint) nor multiedges, i.e. E(G) is a set and not a multiset.
Figure 2.1 depicts an example of a simple, undirected graph G with vertex-set V (G) = {a, b, ..., l}.
Some edges of G are {a, b}, {e, h} and {j, k}.

i
b h

a k

l

gf

e

j

d

c

Figure 2.1. Graph G

Throughout this thesis G = (V (G), E(G)) denotes a simple, undirected graph, with V (G) the set
of vertices and E(G) the set of edges. We use V and E instead of V (G) and E(G), respectively, if it
is clear from the context which graph is meant. Two vertices are said to be adjacent, if they are joined
by an edge. In Figure 2.1, e.g. vertices c and e are adjacent, and they are the endpoints of edge {c, e}.
Two edges e1 = {v1, v2} and e2 = {v3, v4} are disjoint if they do not have an endpoint in common,
i.e. if e1 ∩ e2 = ∅.

12 2 Preliminaries

A sequence of vertices v0, ..., vl is a path from v0 to vl of length l in G if vi−1 and vi are adjacent
for i = 1, 2, ..., l. A path is simple if all vertices in the path are pairwise distinct. The sequence
a, c, e, h, j is a simple path of length 4 in G in Figure 2.1. A sequence of vertices v0, ..., vl is a cycle
of length l in G if v0 = vl and {vi−1, vi} ∈ E for i = 1, 2, ..., l. A simple cycle is a cycle where
all vertices in the cycle are pairwise distinct. Sequence b, c, e, h, d, b is a simple cycle of length 6 in
the example graph in Figure 2.1. A (directed) graph is acyclic if it does not have a (directed) cycle.
A graph G is connected if between any two vertices of G there is a path joining them. A tree is a
graph that is acyclic and connected. G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and
E′ ⊆ E ∩ (V ′ × V ′). A connected component of G is a maximal subgraph of G that is connected. A
graph G can consist of connected components O1, ..., Oq. In that case, we write G = O1 ∪ ... ∪ Oq,
where ∪ denotes the disjoint union of graphs, and each Oi (1 ≤ i ≤ q) is connected. The graph G in
Figure 2.1 is connected and hence, consists of exactly one connected component.

Unless otherwise stated, n(G) (or simply n) denotes the number of vertices in G, i.e. n := |V |,
and m(G) (or simply m) denotes the number of edges m := |E|. For G in Figure 2.1, we have that
n = 12 and m = 19. The open neighbourhood NG(v) or simply N(v) of a vertex v ∈ V is the set of
vertices adjacent to v in G. In Figure 2.1, NG(j) = {e, g, h, k, l}. N(S) for S ⊆ V denotes the open
neighbourhood of S, i.e. N(S) =

⋃
s∈S N(s) \ S. The degree in G of vertex v is dG(v) = |N(v)| or

simply d(v). For instance, we have for G as in Figure 2.1, d(i) = 1 and d(e) = 6. We denote with
δ(G) the minimum degree of graph G, i.e. δ(G) := minv∈V d(v). A vertex v is universal in G, if v is
adjacent to each vertex w ∈ V,w 6= v. Graph G in Figure 2.1 does not possess a universal vertex. For
v ∈ V , we denote by G− v the graph obtained from G by deleting v, i.e. G− v := G[V \ {v}], and
for e ∈ E, we define G− e := (V,E \ {e}).

A set W ⊆ V is a clique in G, if for all v, w ∈ W with v 6= w, it holds that {v, w} is an edge in
G. Example cliques in Figure 2.1 are {b, e}, {j, k, l} and {b, d, e, h}. A set U ⊆ V is a vertex cover
of G, if for each edge {v, w} ∈ E at least one of v and w belongs to U . A vertex cover of size 7 of
G in Figure 2.1 is e.g. {a, b, e, g, h, k, l}. The decision problem related to the notion vertex cover is
NP -complete [60, 49] and is formulated as follows:

Problem: VERTEX COVER

Instance: Graph G = (V,E) and k ∈ N.
Question: Is there a vertex cover U of G with |U | ≤ k?

Note that N is the set of the nonnegative integers, and Q denotes the set of rational numbers.

2.2 Edge Contraction

In this section, we give a formal approach to the notion of edge-contraction, and we derive some
basic properties of this notion and give formal proofs of (mostly intuitive) results. Informally, the
contraction of an edge {u, v} replaces u and v by a new vertex that is adjacent to the neighbours of u
and v.

Edge contraction is used in several important graph theoretic investigations. We just mention here
the much studied notion of graph minor – a graph that can be obtained from a graph by a series
of vertex deletions, edge deletions and edge contractions. Well-known is the fundamental work of
Robertson and Seymour on graph minors, see e.g. [73].

Even though most of the statements proven in this section are intuitive, a formal proof can
sometimes be more technical than expected. We start by formally defining single edge contractions
and showing the commutativity of such single contractions. We will work towards the notions of
contraction-set and contractions of a graph.

2.2 Edge Contraction 13

It is easy to intuitively understand the meaning of contracting an edge. In Figure 2.2, we can see an
example when we contract an edge e that belongs to a cycle of length three. This example is essential,
since it shows that there are two ways of looking at edge contractions. In the first case, the result might

e

Figure 2.2. Original graph; resulting multigraph after contracting edge e; resulting simple graph after contracting edge e

be a multigraph, since the endpoints of the edge to be contracted might have common neighbours as
edge e in Figure 2.2. In the second case, the result is always a simple graph, because parallel edges
that might occur will always be replaced by a single edge. It is evident that in that case, contracting
an edge can decrease the total number of edges by more than one. These two ways of contracting an
edge e in G are sometimes denoted as G/e and G//e, (e.g. in [73]).

In this thesis, we only consider simple graphs, and we use the notation G/e (as used in [42, 43])
for an edge contraction which results in a simple graph, since we replace parallel edges by a single
edge. Therefore, contracting edge e = {vi, vj} in the graph G, denoted as G/e, is the operation that
introduces a new vertex ae and new edges such that ae is adjacent to all the vertices inN(e) and delete
vertices vi and vj and all edges incident to vi or vj .

Definition 1. Let be given a graph G = (V,E). Let be e ∈ E, or let be e ⊆ V with |e| = 1.
Furthermore, let be ae 6∈ V . Contracting e in G results in the graph G/e, defined as follows:

G/e := (V/e,E/e), where

V/e = {ae} ∪ V \ e
E/e = (

⋃

f∈E\{e}
(f/e)) \ {e}

f/e =

{
{ae} ∪ f \ e if f ∩ e 6= ∅
f otherwise

To be formally consistent, we included in the previous definition the case that e is ‘an edge’ consisting
of a single vertex. This is important, because of previous edge contractions. If e belongs to a set of
contracted edges forming a cycle, e can consist of only one vertex, (see Lemma 5).

Lemma 2. Let a graph G = (V,E) and two distinct edges e, f ∈ E be given. Let G1 = (V1, E1) =
(G/e)/(f/e) and G2 = (V2, E2) = (G/f)/(e/f). Then G1 and G2 are isomorphic, i.e. G1

∼= G2.

Proof. In case e and f are not adjacent, the lemma is easy to see, since the contractions of e and f do
not influence each other. Thus, we assume e = {u, v} and f = {v, w}.

Claim. V1 = {af} ∪ V \ {u, v, w}.

Proof. This is easy to see:

14 2 Preliminaries

(V/e)/(f/e) = ({ae} ∪ V \ {u, v})/({ae, w})
= {af} ∪ ({ae} ∪ V \ {u,w}) \ {ae, w}
= {af} ∪ V \ {u, v, w}

�

In the same way, we obtain: V2 = {ae} ∪ V \ {u, v, w}, and therefore, we see that V1 and V2 only
differ in the name of one element, namely the only new vertex.

We define a mapping i : V1 ↔ V2 in the following way:

i(v) =

{
v if v ∈ V
ae otherwise, i.e. if v = af

Now, we will prove that the mapping i is an isomorphism between G1 and G2. From before, we
already know that |V1| = |V2|. What remains to be shown is that two vertices x and y are joined by an
edge in G1 if and only if the corresponding vertices are joined by an edge in G2.

The next two claims can be deduced from the Definition 1 and the definition of G1 and G2. First,
we consider the case that the considered vertices x and y are pairwise different from the new vertex.
Note that i(x) = x and i(y) = y.

Claim. {x, y} ∈ E1 ∧ af 6∈ {x, y} ⇐⇒ {x, y} ∈ E2 ∧ ae 6∈ {x, y}

Proof.

{x, y} ∈ E1 ∧ af 6∈ {x, y} ⇐⇒ {x, y} ∈ E/e ∧ {ae, w} ∩ {x, y} = ∅
⇐⇒ {x, y} ∈ E ∧ {u, v, w} ∩ {x, y} = ∅
⇐⇒ {x, y} ∈ E/f ∧ {u, af} ∩ {x, y} = ∅
⇐⇒ {x, y} ∈ E2 ∧ ae 6∈ {x, y} = ∅

�

Now, we consider the case that af ∈ {x, y}. W.l.o.g. let be x = af . Note that i(x) = ae and i(y) = y.

Claim. {af , y} ∈ E1 ⇐⇒ {ae, y} ∈ E2

Proof.

{af , y} ∈ E1 ⇐⇒ {ae, y} ∈ E/e ∨ {w, y} ∈ E/e
⇐⇒ {u, y} ∈ E ∨ {v, y} ∈ E ∨ {w, y} ∈ E
⇐⇒ {u, y} ∈ E/f ∨ {af , y} ∈ E/f
⇐⇒ {ae, y} ∈ E2

�

We can summarise this: {x, y} ∈ E1 ⇐⇒ {i(x), i(y)} ∈ E2. Therefore, mapping i is an isomorphism
and G1 and G2 are isomorphic. ut

Note that any two permutations of the same elements can be transformed into each other by succes-
sively swapping the positions of neighbouring elements. Therefore, with Lemma 2, we can conclude
the following corollary.

2.2 Edge Contraction 15

Corollary 3. Contracting edges in a graph is commutative.

Hence, it is sensible to define the contraction of a set of edges. Hereafter, we use the following
shorthand:

e1/e2/e3/.../ep := (e1/e2)/(e3/e2)/.../(((ep/e2)/(e3/e2))...)

Definition 4. Given a graph G and a set of edges E ′ = {e1, ..., ep}, we define:

G/E′ := G/e1/.../ep

When contracting a set of edges, the edges to be contracted might be modified due to earlier
contractions. The next lemma makes a statement about the edge which is contracted last, if a set of
edges is contracted that forms a cycle in the graph.

Lemma 5. Let C = (v1, ..., vp) be a cycle of length p ≥ 3, and let E ′ be the set of edges in C,
i.e. E′ = {e1 = {v1, v2}, ..., ep = {vp, v1}}. W.l.o.g. we contract the edges in the following order:
e1, ..., ep. Then ep will degenerate to a single vertex due to the contractions of e1, ..., ep−1, i.e.:

ep/e1/.../ep−1 = {aep−1}

for a new vertex aep−1 .

Proof. We prove this by induction on p. For p = 3, we have: e1 = {v1, v2}, e2 = {v2, v3}, and
e3 = {v3, v1}.

e3/e1/e2 = (e3/e1)/(e2/e1)

= ({v3, v1}/{v1, v2})/({v2, v3}/{v1, v2})
= {ae1 , v3}/{ae1 , v3}
= {ae2}

Hence, we assume the lemma holds for cycles of length p, and we will show it also holds for cycles
of length p + 1. Let be given a cycle e1, ..., ep+1 of length p + 1. Contracting e1 introduces a new
vertex ae1 and we see that e2/e1 = {ae1 , v3} and ep+1/e1 = {ae1 , vp+1}. All other edges are not
influenced by contracting e1. Hence, this results in a cycle of length p, for which we know that the
lemma holds. ut

Definition 1 defines edge contractions. For technical reasons, it also defines the contraction of ‘an
edge’ consisting of a single vertex. However, such a contraction in G results in a graph isomorphic to
G.

Lemma 6. Let a graph G = (V,E) and x ∈ V be given. Furthermore, let G′ = (V ′, E′) = G/x.
Then we have: G′ ∼= G.

Proof. Looking at Definition 1, we see that V ′ = {ax}∪V \x. We do not delete any edges from E to
obtainE′, but we update all single edges which contained x to contain ax. Therefore,G′ is isomorphic
to G, since we only changed the name of vertex x into ax. ut

Lemma 7. Let a graph G = (V,E), a set of edges E1 = {h1, ..., hq} and a set of edges E2 =
{e1, ..., ep}, with E1 ∩ E2 = ∅ be given. Let E2 form a cycle e1, ..., ep with 3 ≤ p. Let E′ =
{h1, ..., hq, e1, ..., ep} and E′′ = {h1, ..., hq, e1, ..., ep−1}. Then G/E′ is isomorphic to G/E ′′, i.e.
G/E′ ∼= G/E′′.

16 2 Preliminaries

Proof. From Corollary 3, we know that edge contractions are commutative. Therefore, we choose to
contract edges in the following order: e1, ..., ep, h1, ..., hq. Then we have:

G/E′ = G/e1/.../ep−1/ep/h1/.../hq

(from Lemma 5 follows:)

= G/e1/.../ep−1/{ap}/h1/.../hq

(from Lemma 6 follows:)
∼= G/e1/.../ep−1/h1/.../hq
∼= G/E′′

ut

From the lemma, we easily conclude that we can delete an arbitrary edge in a cycle in a set of
edges E′ ⊆ E to be contracted, for a graph G = (V,E). We can repeat this until there are no cycles
left. The result will be a maximal spanning forest E ′′ of G[E′], and we have G/E ′ is isomorphic
to G/E′′, i.e. G/E′ ∼= G/E′′. (G[E′] denotes the subgraph of G induced by the edge-set E ′, see
Section 2.3 for more details.) Since we can restrict ourself to edge sets without cycles, we use the
term contraction-set to refer to such sets.

Definition 8. A contraction-setE ′ inG = (V,E) is a set of edges E ′ ⊆ E, such thatG[E ′] is a forest.
A contraction H of G is a graph such that there exists a contraction-set E ′ with: H = G/E′.

After the previous observations, we develop another view on contracting a set E ′ of edges. The
graphG[E′] is composed of connected componentsO1, ..., Oz , withOi = (Vi, Ei). When contracting
E′ inG, then every connected componentOi will be replaced by a new single vertex ai. This vertex ai
will be made adjacent to every vertex in NG(Vi), i.e. all vertices that are neighbours in G of a vertex
in Oi, but that do not belong to Vi. It becomes evident from the previous lemmas that this definition
of edge contractions is equivalent to Definition 1.

Note once again that after each single edge-contraction the names of the vertices are updated in
the graph. Hence, for two adjacent edges e = {u, v} and f = {v, w}, edge f will be different after
contracting edge e, namely in G/e we have f = {ae, w}. However, it might be convenient to use f to
represents the same edge in G and in G/e. The same applies also to vertices.

The next lemma tells us that an edge contraction might decrease the degree of a vertex, but it can
never decrease it by more than one.

Lemma 9. Let be given a graph G = (V,E), v ∈ V and e ∈ E.

v 6∈ e =⇒ dG/e(v) ≥ dG(v)− 1

v ∈ e =⇒ dG/e(ae) ≥ dG(v)− 1

Proof. We prove this by considering an exhaustive case distinction.
Case 1 ‘e = {u, v} ∧ v ∈ e’: Clearly, we have:

NG/e[v] = NG[v] ∪NG[u] ∪ {ae} \ {u, v}

And therefore it holds that:

2.3 Subgraphs and Minors 17

dG/e(v) = |NG/e(v)| = |NG/e[v]| − 1

= |NG[v] ∪NG[u] ∪ {ae} \ {u, v}| − 1

≥ |NG[v] ∪ {ae} \ {u, v}| − 1

≥ |NG[v]|+ 1− 2− 1 = |NG[v]| − 2 = |NG(v)| − 1 = dG(v)− 1

Case 2 ‘e = {u,w} ∧ |e ∩N(v)| = 2’: We have:

NG/e(v) = NG(v) ∪ {ae} \ {u,w}

and thus:

dG/e(v) = |NG/e(v)| = |NG(v) ∪ {ae} \ {u,w}|
= |NG(v)|+ 1− 2 = |NG(v)| − 1 = dG(v)− 1

Case 3 ‘e = {u,w}∧ |e∩N(v)| ≤ 1’: In this case, the neighbourhood of v is not affected, apart from
a possible change of the name of one vertex in N(v). Therefore, dG/e(v) = dG(v). ut

2.3 Subgraphs and Minors

When deleting vertices of a graph G = (V,E) and their incident edges, we get an induced subgraph.
For V ′ ⊆ V , the subgraph induced by V ′ is denoted byG[V ′], and it holds thatG[V ′] = (V ′, E′) with
E′ = E ∩ (V ′ × V ′). A less standard notion is G[E ′] – the graph induced by an edge set E ′ ⊆ E. It
holds that G[E′] = (V ′, E′), with V ′ =

⋃
e∈E′ e. A subgraph is obtained, if we additionally allow the

deletion of edges, i.e. G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E∩ (V ′×V ′).
We use G′ ⊆ G to denote that G′ is a subgraph of G. If we furthermore allow edge-contractions (see
Section 2.2 for more details), we get a minor. Following the notations of [42, 43], we write G′ � G,
if G′ is a minor of G. We explicitely exclude the null graph (the empty graph on 0 vertices), as a
subgraph or minor of a graph. The next definition summarises the paragraph above.

Definition 10. Let G = (V,E) be a graph.

• G′ is a (vertex-set) induced subgraph of G, if there is a V ′ ⊆ V with |V ′| ≥ 1, such that G′ =
G[V ′] = (V ′, {{v, w} ∈ E | v, w ∈ V ′}).

• G′ is an edge-set induced subgraph of G, if there is a E ′ ⊆ E with E′ ≥ 1, such that G′ =
G[E′] = (

⋃
e∈E′ e, E

′).
• G′ = (V ′, E′) is a subgraph of G, if V ′ ⊆ V , |V ′| ≥ 1 and E′ ⊆ E.
• G′ is a minor of G, if there exists a subgraph H of G and a contraction-set F ⊆ E(H), such that

G′ = H/F .

We consider again the graph G shown in Figure 2.1. Figure 2.3 depicts some example subgraphs
and minors ofG, respectively. On the very left, we see a subgraph induced by the vertex-set {b, c, e, i}.
This induced subgraph consists of two connected components. The graph right next to it is a subgraph
of G, induced by the edge-set {{b, c}, {b, e}, {d, h}}. A subgraph which is not induced, is the graph
second from right. On the very right, we see a minor of G, where at least one edge (one of the edges
{e, f}, {f, g} or {g, j}) has been contracted.

18 2 Preliminaries

b

c e

b

c e

d
a

b

c

i
h

Figure 2.3. Four graphs (three of which are decomposed into two connected components) as subgraphs or minors of the
graph G in Figure 2.1

2.4 Treewidth

The notions tree-decomposition and treewidth were introduced by Robertson and Seymour, see
e.g. [79, 80].

Definition 11. A tree-decomposition of a graph G = (V,E) is a pair (T,X) with T = (I, F) a tree,
and X = {Xi | i ∈ I} a family of subsets of V , one for each node of T , such that

• ⋃
i∈I Xi = V .

• for all edges {v, w} ∈ E there exists an i ∈ I with {v, w} ⊆ Xi.
• for all i, j, k ∈ I : if j is on the path in T from i to k, then Xi ∩Xk ⊆ Xj .

The width of a tree-decomposition ((I, F), {Xi | i ∈ I}) is maxi∈I |Xi| − 1. The treewidth tw(G) of
a graph G is the minimum width over all tree-decompositions of G.

Once more, we consider graph G given in Figure 2.1. Figure 2.4 shows a tree-decomposition of G
of width 3. There is no tree-decomposition of G with smaller width, and thus, tw(G) = 3. A tree-
decomposition (T,X) is minimal if for all v ∈ V , the deletion of v from a subset Xi ∈ X violates at
least one of the conditions in Definition 11.

a
cb

c
b
e

h
i

h
e

d
b h

je

j

j
lk

e
f j g f

Figure 2.4. A tree-decomposition of width 3 of the graph G in Figure 2.1

For more information on treewidth and how tree-decompositions can be used in the design of
bottom-up or dynamic-programming algorithms to solve problems on graphs of bounded treewidth,
see e.g. [8] or [10]. Such methods often use nice tree-decompositions.

Definition 12. A tree-decomposition (T,X) is nice, if T is rooted and binary, and the nodes are of
four types:

• Leaf nodes i are leaves of T and have |Xi| = 1.
• Introduce nodes i have one child j with Xi = Xj ∪ {v} for some vertex v ∈ V .
• Forget nodes i have one child j with Xi = Xj \ {v} for some vertex v ∈ V .

2.5 Subdividing an Edge 19

• Join nodes i have two children j1, j2 with Xi = Xj1 = Xj2

A tree-decomposition can be converted into a nice tree-decomposition with |I| = O(V |G|) of the
same width in linear time (see [61, 10]). The properties of a nice tree-decomposition will in general
not provide more algorithmic power. However, designing algorithms is often easier when using a nice
tree-decomposition.

Unless otherwise stated, T = (I, F) is a nice tree-decomposition of the graphG. The term ‘vertex’
refers to a vertex of the graph and the term ‘node’ refers to a vertex of a tree (-decomposition).
Popular words for referring to a node of a tree-decomposition are also ‘supernode’ or ‘bag’, since
they represent a subset of vertices of the original graph.

The next lemma is a well-known result and an important fact for proving the parameters, consid-
ered in Chapter 3, to be treewidth lower bounds.

Lemma 13 (see e.g. [11]). If G′ is a minor of G, then tw(G′) ≤ tw(G).

2.5 Subdividing an Edge

Subdividing an edge e = {u,w} means putting a new vertex ve on the edge e. Formally, it is an
operation that introduces a new vertex ve and replaces the edge e = {u,w} by the two edges {u, ve}
and {ve, w} (see Figure 2.5).

u w u wve

e

Figure 2.5. Subdividing edge e

When doing this for all edges of a graph, we clearly increase the size of it. Let G = (V,E) be
the original graph, and G′ = (V ′, E′) be the graph after subdividing each edge of G. Then we have:
|V ′| = |V |+ |E| and |E ′| = 2 · |E|. For arbitrary graphs, it holds that |E| ≤ |V |·(|V |−1)

2 which would
mean a potential quadratic increment.

For graphs of bounded treewidth, however, the increment is only linear, because due to their special
structure, we have for such graphs that |E| ≤ k · |V | − k·(k+1)

2 (see [9]). Hence, the size of the vertex
set |V ′| is linear in |V |, if k is considered to be a constant. Subdivisions have no effect on the treewidth
of a simple graph. For this, consider an edge e = {u,w}. In our tree-decomposition, there is one node
i with {u,w} ⊆ Xi. When placing vertex ve on this edge, we can simply attach a new node {u, ve, w}
to the node i. It is easy to see that this results in a proper tree-decomposition and does not increase its
width, if the width is at least 2. Also, if the graph has treewidth 1, it is a forest, and the graph resulting
from subdividing a forest is still a forest and hence, also has treewidth 1. If the graph has treewidth 0,
then there are no edges that could be subdivided in the graph. Hence, subdivisions do not affect the
treewidth of a graph.

3

Treewidth Lower Bounds:
Methods, Relations and Complexity

This chapter focuses on lower bounds on the treewidth of a graph. As mentioned at the beginning of
this thesis, good lower bounds can serve to speed up branch-and-bound methods, inform us about the
quality of upper bound heuristics, and in some cases, tell us that we should not use tree-decompositions
to solve a problem on a certain instance. A large lower bound on the treewidth of a graph implies that
we should not hope for computationally efficient dynamic-programming algorithms that use tree-
decompositions for this particular instance.

Every lower bound method for treewidth can be extended by taking the maximum of the lower
bound over all subgraphs or minors of a graph. In this chapter, we study this extension from a the-
oretical point of view. We look at treewidth lower bounds (Section 3.1), obtained by combining the
minimum degree with taking subgraphs and minors. We also apply this idea to two other parameters
that are related to the minimum degree. A combination of taking minors and a treewidth lower bound
based on Maximum Cardinality Search (see [70]) is considered in Section 3.2. These investigations,
based on the idea to incorporate edge-contraction into existing treewidth lower bounds, result in a
number of graph parameters, providing new lower bounds for treewidth. We show relations between
these graph parameters and study their computational complexity. The basic concept of another gen-
eral method to extend and improve treewidth lower bounds is described in Section 3.3. This method
was introduced in [32] and is based on so-called ‘improved graphs’. The content of this chapter is
based on cooperations with Hans L. Bodlaender and Arie M. C. A. Koster, see [17, 18, 65, 66, 99].

3.1 Contraction Degeneracy and Related Lower Bounds

The minimum degree of a graph is known to be a treewidth lower bound. Taking the minimum degree
over all subgraphs of a graph can improve this lower bound. Going one step further, we can take the
minimum degree over all minors. (This results in the parameter ‘contraction degeneracy’.) This section
is devoted to a number of parameters that are related to the minimum degree and their combinations
with subgraphs or minors.

In [6], the degeneracy of a graph is defined as follows:

Definition 14 (see [6]). The degeneracy s(G) of a graph G is the minimum number s such that G can
be reduced to an empty graph by the successive deletion of vertices with degree at most s.

We now define the parameter δD of a graph G which is the maximum over all subgraphs of G of
the minimum degree of the subgraph, and we show that s(G) = δD(G).

δD(G) := max
G′
{δ(G′) | G′ ⊆ G ∧ n(G′) ≥ 1}

22 3 Treewidth Lower Bounds: Methods, Relations and Complexity

Lemma 15 (folklore). For any graph G, it holds that: s(G) = δD(G).

Proof. In each G′ ⊆ G, there is a vertex with degree at most δD(G). Therefore, we can reduce G to
an empty graph by successively deleting a vertex of degree at most δD(G). Hence, s(G) ≤ δD(G).

On the other hand, letG′ ⊆ G be such that δ(G′) = δD(G). Now, consider a sequence S of vertex
deletions, such that the deleted vertices have degree at most s(G). Let v ∈ V (G′) be the first vertex
that is deleted in S. At this moment of deletion, v has degree at least dG′(v) ≥ δ(G′), since v is the
first vertex deleted in G′. Furthermore, we know that at the moment of deleting v, we have that the
degree of v is at most s(G). Hence, altogether, we have that s(G) ≥ dG′(v) ≥ δ(G′) = δD(G). ut

In the following, we use δD(G) to denote the degeneracy of a graph. It is interesting that Defini-
tion 14 suggests an algorithm to compute the degeneracy: Successively delete a vertex of minimum
degree and return the maximum of the encountered minimum degrees. This simple algorithm has
been used to compute the degeneracy as a treewidth lower bounds e.g. in [63]. Later in this section
and in Chapter 4, we will develop and examine more treewidth lower bounds based on this simple
observation.

One key idea for our investigations is based on the fact that the treewidth does not increase when
taking minors (see Lemma 13). Looking at the method described above to compute the degeneracy, we
also can contract a vertex of minimum degree to one of its neighbours, instead of deleting it. In such a
‘degeneracy algorithm’ with contractions instead of deletions, we can get different values if we make
different choices of which minimum degree vertex to select, and which neighbour to contract it with.
The optimal way of doing these contractions is captured by the notion of contraction degeneracy. This
approach results in the variants of the parameters involving edge contraction.

3.1.1 Definition of the Parameters

We define a number of graph parameters in this section, each of these being a lower bound on the
treewidth of a graph, cf. Section 3.1.2. For the sake of completeness, we repeat the definitions of δ
and δD. For the minimum degree δ of a graph G, we have:

δ(G) := min
v∈V

d(v)

The δ-degeneracy or simply the degeneracy δD of a graph G is defined as follows (see also the
beginning of Section 3.1 and Definition 14):

δD(G) := max
G′
{δ(G′) | G′ ⊆ G ∧ n(G′) ≥ 1}

The δ-contraction degeneracy or simply the contraction degeneracy δC of a graphG was first defined
in [17]. It is defined as the maximum over all minors G′ of G of the minimum degree:

δC(G) := max
G′
{δ(G′) | G′ � G ∧ n(G′) ≥ 1}

Let an ordering v1, ..., vn of the vertices of G be given with n ≥ 2, such that d(vi) ≤ d(vi+1), for all
i ∈ {1, ..., n− 1}. The second smallest degree δ2 of a graph G is defined as:

δ2(G) := d(v2)

Note that it is possible that δ(G) = δ2(G). Similar to the δ-degeneracy and δ-contraction-degeneracy
we define the δ2-degeneracy and δ2-contraction-degeneracy. The δ2-degeneracy δ2D of a graph G =
(V,E) with n ≥ 2 is defined as follows:

3.1 Contraction Degeneracy and Related Lower Bounds 23

δ2D(G) := max
G′
{δ2(G′) | G′ ⊆ G ∧ n(G′) ≥ 2}

The δ2-contraction degeneracy δ2C of a graph G = (V,E) with n ≥ 2 is defined as:

δ2C(G) := max
G′
{δ2(G′) | G′ � G ∧ n(G′) ≥ 2}

In [76, 77], Ramachandramurthi introduced the parameter γR(G) of a graph G and proved that this is
a lower bound on the treewidth of G. Here γR(G) is defined as:

γR(G) := min(n− 1, min
v,w∈V,v 6=w,{v,w}6∈E

max(d(v), d(w)))

Note that γR(G) = n − 1 if and only if G is a complete graph on n vertices. Furthermore, note that
γR(G) is determined by a pair {v, w} 6∈ E with max(d(v), d(w)) as small as possible. For such a
pair, we then say that {v, w} is a nonedge determining γR(G). If d(v) ≤ d(w) then we say that w
is a vertex determining γR(G). Once again, we define the ‘degeneracy’ and ‘contraction degeneracy’
versions also for the parameter γR. The γR-degeneracy γRD of a graph G = (V,E) with n ≥ 2 is
defined as follows:

γRD(G) := max
G′
{γR(G′) | G′ ⊆ G ∧ n(G′) ≥ 2}

The γR-contraction degeneracy γRC of a graph G = (V,E) with n ≥ 2 is defined as:

γRC(G) := max
G′
{γR(G′) | G′ � G ∧ n(G′) ≥ 2}

Note that the contraction variants δC(G), δ2C(G) and γRC(G) were all defined as the maximum over
all minors G′ � G of δ(G), δ2(G) and γR(G), respectively. Using contractions instead of minors in
these definitions does not lead to an equivalent notion, unless the considered graph G is connected.
If G is not connected, it might be necessary to delete one or more connected components, to obtain a
minor G′ of G with maximum minimum degree.

3.1.2 Relationships Between the Parameters

In this section, we examine the relationships between ten graph parameters: the treewidth of a graph
and the nine parameters which were defined in the previous section.

Lemma 16. For any graph G = (V,E) with |V | ≥ 2, it holds that:

δ(G) ≤ δ2(G) ≤ γR(G) ≤ tw(G)

Proof. The first two inequalities follow directly from the definitions of the corresponding parameters.
The last one was proven by Ramachandramurthi in [76]. ut

Note that δ(G) is known to be a treewidth lower bound for a long time (see e.g. [87, 11, 63]). One
possible proof uses an argument based on minimal tree-decompositions (T,X) of width tw(G). Let
i be a leaf node of T , and let j be the neighbour of i. By minimalism of (T,X), there is a vertex
v ∈ Xi \Xj . Therefore, all the neighbours of v are contained in Xi, and hence we have that δ(G) ≤
d(v) ≤ |Xi| − 1 ≤ tw(G). With a similar argument, we can also prove δ2(G) to be a treewidth lower
bound.

24 3 Treewidth Lower Bounds: Methods, Relations and Complexity

Lemma 17. For any graph G and x ∈ {δ, δ2, γR}, it holds that:

x(G) ≤ xD(G) ≤ xC(G) ≤ tw(G)

Proof. Note that G is a subgraph of G, and any subgraph of G is also a minor of G. Therefore,
the first two inequalities are trivial. Furthermore, taking minors does not increase the treewidth (see
Lemma 13). We also have that x(G′) ≤ tw(G′) (which follows from Lemma 16) for G′ a minor of
G. Hence, it follows that x(G′) ≤ tw(G′) ≤ tw(G) for any minor G′ of G, and therefore xC(G) ≤
tw(G). ut

Lemma 18. For any graph G = (V,E) with |V | ≥ 2 and X ∈ {D,C}, it holds that:

δX(G) ≤ δ2X(G) ≤ γRX(G) ≤ tw(G)

Proof. Lemma 16 holds for every subgraph or minorG′ ofG, unlessG′ has only one vertex. However,
in that case the minimum degree is zero, and since G has at least two vertices, it is obvious that
δ2X(G) ≥ 0 and γRX(G) ≥ 0. Therefore, the first two inequalities follow. Note that γRX(G) ≤
γRC(G) ≤ tw(G) (see Lemma 17), and hence γRX(G) ≤ tw(G). ut

An alternate argument proving δ2C(G) to be a treewidth lower bound is given in the proof of
Lemma 32 in Section 3.1.5.

Lemma 19. For any graph G = (V,E) with |V | ≥ 2 and X ∈ {D,C}, it holds that:

δ2X(G) ≤ δX(G) + 1

Proof. Let G′ = (V ′, E′) be a subgraph (if X = D) or minor (if X = C) of G with δ2(G′) =
δ2X(G), and let v1 and v2 be vertices in G′ with smallest and second smallest degree in G′, respec-
tively, i.e. dG′(v1) = δ(G′) and dG′(v2) = δ2(G′). We consider the graph G′′ := G′[V ′ \ {v1}]. Note
that G′′ is also a subgraph (X = D) or minor (X = C) of G. It is clear that we have:

∀v ∈ V (G′′) : dG′(v)− 1 ≤ dG′′(v) ≤ dG′(v)

Let w ∈ V (G′′) be a vertex with minimum degree in G′′, i.e. δ(G′′) = dG′′(w). By the definition of
v2, it holds that:

δ2X(G) = dG′(v2) ≤ dG′(w)

Otherwise v2 was not a vertex of second smallest degree in G′. Altogether, we have:

δ2X(G)− 1 = dG′(v2)− 1 ≤ dG′(w)− 1 ≤ dG′′(w) = δ(G′′) ≤ δX(G)

ut

The next lemma shows some interesting properties of the parameter γR, when given a vertex
sequence sorted according to nondecreasing degree. It is needed in the proof of a subsequent lemma.

Lemma 20. Let be given a graph G on n vertices with G 6= Kn. Furthermore, let an ordering
v1, ..., vn of V (G) be given, such that d(vi) ≤ d(vi+1), for all i ∈ {1, ..., n − 1}. We define
j := min{i ∈ {1, ..., n} | ∃l ∈ {1, ..., i− 1} : {vi, vl} 6∈ E(G)}. Then we have:

1. d(vj) = γR(G)
2. v1, ..., vj−1 form a clique in G

3.1 Contraction Degeneracy and Related Lower Bounds 25

Proof. (1.) Since d(vl) ≤ d(vj) and {vi, vl} 6∈ E(G), we clearly have max{d(vl), d(vj)} = d(vj) ≥
γR(G), and because there is no vj′ with d(vj′) ≤ d(vj) and j′ < j, such that there is a vl′ ∈
{v1, ..., vj′ − 1}, with {vl′ , vj′} 6∈ E(G), the equality follows.

(2.) This follows because if vj is the left-most vertex in the given sequence that is not adjacent to
all the vertices v1, ..., vj−1 to its left, then the vertices v1, ..., vj−1 must form a clique. ut

Lemma 21. For any graph G = (V,E) with |V | ≥ 2 and X ∈ {D,C}, it holds that:

γRX(G) ≤ 2 · δ2X(G)

Proof. Let G′ = (V ′, E′) be a minimal subgraph (in case X = D) or a minimal minor (in case
X = C) of G with γR(G′) = γRX(G), i.e. there is no subgraph or minor G∗ of G′ with γR(G∗) ≥
γR(G′). If G′ is a complete graph on n′ := |V ′| vertices, then the lemma follows easily. For technical
reasons, we assume in the following w.l.o.g. that G′ 6= Kn′ . Let an ordering v1, ..., vn′ of V ′ be given,
such that dG′(vi) ≤ dG′(vi+1), for all i ∈ {1, ..., n′ − 1}. We define j := min{i ∈ {1, ..., n′} | ∃l ∈
{1, ..., i−1} : {vi, vl} 6∈ E′}. From Lemma 20, we know that dG′(vj) = γR(G′) and that v1, ..., vj−1

form a clique in G′. Thus, these vertices have degree at least j − 2. To show the lemma, we need a
slightly higher degree as stated by the following claim.

Claim. δ2(G′) = dG′(v2) ≥ j − 1.

Proof. Assume the opposite, namely that dG′(v1) = dG′(v2) = j − 2. Hence, v1 and v2 are only
adjacent to the vertices in the clique formed by v1, ..., vj−1, and therefore, both v1 and v2 are not
adjacent to vj . Note that max{dG′(v1), dG′(vj)} = max{dG′(v2), dG′(vj)} = γR(G′). Now, we
consider G′[V ′ \ {v1}]. The deletion of v1 decreases the degree of the vertices v2, ..., vj−1 by one.
However, v2, ..., vj−1 still form a clique in G′[V ′ \ {v1}]. Furthermore, note that due to the deletion
of v1, we only deleted nonedges {v1, vi}, i.e. pairs of vertices {v1, vi} 6∈ E′. Deleting elements of
a set over which a minimum is taken can never decrease the value of that minimum. Therefore, we
can conclude that {v2, vj} is a nonedge in G′[V ′ \ {v1}], determining γR(G′[V ′ \ {v1}]). Since the
degree of vj did not change when deleting v1, we have that max{dG′[V ′\{v1}](v2), dG′[V ′\{v1}](vj)} =
γR(G′[V ′ \{v1}]) = max{dG′(v2), dG′(vj)} = γR(G′). Hence, γR(G′[V ′ \{v1}]) ≥ γR(G′), which
contradicts the choice of G′. �

Hence, we have that j − 1 ≤ dG′(vj) = γRX(G). Note that the following holds:

δ2X(G) ≥ δ2X(G′) ≥ δ2(G′) = dG′(v2) ≥ j − 1

We consider now the graph G′′ := G′[V ′ \ {v1, ..., vj−1}], which is also a subgraph (X = D) or
minor (X = C) of G. It is clear that deleting j − 1 vertices in a graph can decrease the degree of any
vertex at most by j − 1. Therefore, we have:

δ2X(G) ≥ δX(G) ≥ δ(G′′) ≥ dG′(vj)− (j − 1)

Hence, altogether, we have:

δ2X(G) ≥ max(j − 1, dG′(vj)− (j − 1))

≥ dG′(vj)

2
=
γR(G′)

2
=
γRX(G)

2

ut

26 3 Treewidth Lower Bounds: Methods, Relations and Complexity

It follows directly from Lemma 16, Lemma 17 and Lemma 18 that all the parameters defined in
Section 2 are lower bounds for treewidth. Furthermore, we see that the gap between the parameters
δD and δ2D, and between δC and δ2C can be at most one (see Lemma 19). In Section 4.2.3, we will
see that δ2D can be computed in polynomial time. Therefore, Lemma 21 gives us a 2-approximation
algorithm for computing the parameter γRD, which is NP -hard to compute, see Section 3.1.3.

3.1.3 NP -completeness Results

In this section, we formulate decision problems for some of the parameters defined in Section 3.1.1,
and we prove that these problems are NP -complete.

Complexity of Computing δC

The decision problem corresponding to δC is formulated as follows:

Problem: CONTRACTION DEGENERACY

Instance: Graph G = (V,E) and integer k ≥ 0.
Question: Is the contraction degeneracy of G at least k?

Theorem 22. The CONTRACTION DEGENERACY problem isNP -complete, even for bipartite graphs.

Proof. Clearly, the problem is in NP as we only have to guess an edge set E ′, and then compute in
polynomial time δ(G/E ′).

The hardness proof is a transformation from the VERTEX COVER problem, which is known to be
NP -complete, see [49]. In the VERTEX COVER problem, we are given a graph G = (V,E) and an
integer k, and look for a vertex cover of size at most k, i.e. a set W ⊆ V with |W | ≤ k, such that
each edge in E has at least one endpoint in W . Let a VERTEX COVER instance (G, k) be given, with
G = (V,E).

Construction:

We build a graph in two steps. In the first step, we construct a graphG′ by taking the complement Ḡ of
G, two adjacent vertices and k pairwise non-adjacent vertices, and making the new vertices adjacent
to each vertex in G. G′ is formally defined as follows, see Figure 3.1:

G′ := (V ′, E′) where

V ′ = V ∪ {w1, w2} ∪ {u1, . . . , uk}
E′ = ({{v, w} 6∈ E | v, w ∈ V, v 6= w}) ∪ { {w1, w2} }

∪{ {wi, v} | i ∈ {1, 2} ∧ v ∈ V }
∪{ {ui, v} | i ∈ {1, . . . , k} ∧ v ∈ V }

The final graph G∗ in our construction is obtained by subdividing any edge in G′, i.e. replacing
each edge in G′ by a path with two edges.

G∗ := (V ∗, E∗) where

V ∗ = V ′ ∪ { ve | e ∈ E′ }
E∗ = { {u, ve}, {ve, w} | e = {u,w} ∈ E′ }

3.1 Contraction Degeneracy and Related Lower Bounds 27

u1

u2

uk

w1

w2

Ḡ

Figure 3.1. Graph G’ constructed in the proof of Theorem 22

Let n = |V |. The constructed instance of the CONTRACTION DEGENERACY problem is (G∗, n+
1).G∗ is a bipartite graph, as all edges inG∗ are between a vertex in V ′ and a vertex in { ve | e ∈ E′ }.
Now, we have to show that there is a vertex cover forG of size at most k if, and only if δC(G∗) ≥ n+1.

Claim. If there is a vertex cover ofG of size at most k, then there is aE3 ⊆ E∗, such that δ(G∗/E3) ≥
n+ 1.

Proof: Suppose there is a vertex cover of size at most k. Now take a vertex cover V1 = {v1, . . . , vk}
of G of size exactly k. (If we add vertices to a vertex cover, we obtain again a vertex cover.) We build
the set of edges to be contracted in two steps. Let E1 be the edge set, such that G∗/E1 = G′, i.e. E1

consists of |E′| edges to undo the subdivisions. First, we contract the edges in E1 and obtain G∗/E1.
Then, inG∗/E1, we contract edge setE2 defined as follows:E2 := { {ui, vi} | i = 1, . . . , k}, i.e. each
vertex in the vertex cover has a vertex of the type ui contracted to it. We write E3 := E1 ∪ E2. We
claim that the resulting graph G3 := G∗/E3 is an (n + 2)-clique. Assume there are two vertices x
and y with {x, y} 6∈ E(G3). Since the vertices w1 and w2 are universal in G3, we have {x, y} ⊆ V .
Therefore, {x, y} ∈ E, and hence x or y is in V1. We assume w.l.o.g. x ∈ V1, i.e. ∃i ∈ {1, . . . , k},
such that vi = x. Since we contracted {ui, vi} and {ui, y} ∈ E(G′), we have vi = x is adjacent to y
in G3, which is a contradiction. Hence, G3 = G∗/E3 is an (n+ 2)-clique and δ(G∗/E3) = n+ 1. �
Claim. If there is a E3 ⊆ E∗, such that δ(G∗/E3) ≥ n + 1, then there is a vertex cover V1 for G of
size at most k.

Proof: We have |E′| vertices VE′ := { ve | e ∈ E′ } of degree two in G∗, namely the subdivisions.
Assuming G has more than just one vertex, i.e. assuming n ≥ 2, we see that all vertices in VE′ have
a degree in G∗ that is too small, and hence, must be contracted in order to get a larger degree. Hence,
there is a E2 ⊆ E3, such that G∗/E2 = G′. Let be E1 := E3 \ E2. Because of the commutativity of
contraction-operations, we assume that we first contract all edges in E2. A vertex ui, ∀i ∈ {1, . . . , k}
has degree exactly n in G′. Thus, for each ui, i ∈ {1, . . . , k}, we have to contract an edge incident to
ui. After contracting these edges, there are n+2 vertices left in the graph. Therefore we cannot contract
another edge, since then we could not obtain the minimum degree of n+ 1. Furthermore, we see that
G∗/E3 is an (n + 2)-clique. Hence, E1 contains exactly k edges, one for every ui, i ∈ {1, . . . , k},
with the other endpoint in V . Let be V1 :=

⋃
e∈E1

e \ ⋃i=1,...k ui. Clearly, |V1| = k, and we claim
that V1 is a vertex cover of G. Assume, there is an edge f = {x, y} in G with V1 ∩ f = ∅. Hence, f
is not an edge in G′. Since G∗/E3 is an (n+ 2)-clique, edge f exists in G∗/E3, which means: f was
created by contracting another edge {ui, vj} ∈ E1. This can only be the case if vj = x or vj = y.
According to the definition of V1, we have: vj ∈ V1, which contradicts V1 ∩ f = ∅. Hence, V1 is a
vertex cover of size k. �
As G∗ can be constructed in polynomial time, the NP -completeness of the CONTRACTION DEGEN-
ERACY problem now follows. ut

28 3 Treewidth Lower Bounds: Methods, Relations and Complexity

Complexity of Computing γRD

In this section, we formulate the decision problem corresponding to the parameter γRD, and we
show its NP -completeness. We will give a proof that is similar to the proof of the NP -completeness
of CONTRACTION DEGENERACY in the previous section. However, before that, we show that only
considering induced subgraphs when computing γRD is sufficient.

Lemma 23. For all graphsG, there exists an induced subgraphG′ ofG such that γR(G′) = γRD(G).

Proof. Let a subgraph G′ = (V ′, E′) of G be given with γR(G′) = γRD(G). Let e ∈ E(G[V ′]) \
E′. If no such edge exists, then G′ is an induced subgraph. Adding edge e to G′ has two effects.
First, note that the degree of two vertices is increased by one. We have that ∀v ∈ V ′ : dG′(v) ≤
d(V ′,E′∪{e})(v) ≤ dG′(v) + 1. Furthermore, note that adding an edge deletes one of the nonedges
{vi, vj} with vi 6= vj ; vi, vj ∈ V ′, over which the minimum of max(dG′(vi), dG′(vj)) is taken.
However, deleting an element of a set over which a minimum is taken can never decrease the value of
that minimum. Therefore, we have γR(G′) ≤ γR((V ′, E′ ∪ {e})). The lemma is shown by applying
this argumentation successively until an induced subgraph is obtained. ut

Problem: γR-DEGENERACY

Instance: Graph G = (V,E) with |V | ≥ 2 and integer k ≥ 0.
Question: Is γRD(G) ≥ k?

Theorem 24. The problem γR-DEGENERACY is NP -complete.

Proof. Membership in NP is easy to see, since we only have to guess a subgraph and then compute
γR of that subgraph in polynomial time. The hardness proof is a transformation of the known NP -
complete problem VERTEX COVER, see [49].

Let a VERTEX COVER instance (G, l) be given withG = (V,E) and V = {v1, ..., vn}. We assume
that 1 ≤ l ≤ n− 1, which is not a restriction, since l = 0 and l = n are trivial instances for VERTEX

COVER. We will construct a γR-DEGENERACY instance.
Construction: We take a clique with vertex set U = {u1, ..., un+l}, an independent set W =

{w1, ..., wn+l−1}, and we take the complement Ḡ of G. We add all edges between vertices in U and
W , and all edges between vertices in W and V . The resulting graph G′ (see Figure 3.2) is formally
defined as follows:

clique independent set complement of G

Ḡ

v1

v2

vn

u1

u2

w1

w2

wn−l+1un+l

Figure 3.2. Graph G′ constructed in the proof of Theorem 24

3.1 Contraction Degeneracy and Related Lower Bounds 29

G′ := (V ′, E′) where

V ′ = U ∪W ∪ V
E′ = { {ui, uj} | ui 6= uj ∧ ui, uj ∈ U }

∪{ {u,w} | u ∈ U ∧ w ∈W }
∪{ {w, v} | w ∈W ∧ v ∈ V }
∪{ {vi, vj} 6∈ E | vi, vj ∈ V, vi 6= vj }

Our constructed γR-DEGENERACY instance is (G′, 2 · n). Now, we show that there is a vertex cover
for G of size at most k if, and only if γRD(G′) ≥ 2 · n.

Claim. If there is a vertex cover V1 of G of size at most l, then γRD(G′) = 2 · n, i.e. then there is a
subgraph G′′ of G′ with γR(G′′) = 2 · n.

Proof. Assume V1 is a vertex cover of G with |V1| = l. Note that Ḡ[V \ V1] is a clique of size n− l,
since a nonedge {vi, vj} in Ḡ[V \ V1] (vi 6= vj), would be an edge in G and therefore, vi ∈ V1 or
vj ∈ V1. We consider G′′ := G′[V ′ \ V1]. Since the remaining vertices of G form a clique in G′′, the
only nonedges are {wi, wj} with i 6= j;wi, wj ∈W , and {ui, vj} with ui ∈ U ; vj ∈ V . Furthermore,
note that max(dG′′(wi), dG′′(wj)) = 2 ·n, and max(dG′′(ui), dG′′(vj)) = 2 ·n. Therefore, γR(G′′) =
2 · n. �

Claim. If γRD(G′) ≥ 2 · n, i.e. if there is a subgraph G′′ of G′ with γR(G′′) ≥ 2 · n, then there is a
vertex cover V1 of G of size at most l.

Proof. Let G′′ = (V ′′, E′′) be given as an induced subgraph of G′ (see Lemma 23), such that
γRD(G′) = γR(G′′) ≥ 2 · n. Note that the only nonedges are {wi, wj} with i 6= j;wi, wj ∈ W ,
{ui, vj} with ui ∈ U ; vj ∈ V , and {vi, vj} ∈ E(G). The degree in G′ (and also in G′′) of a vertex in
V is at most (n− 1) + (n− l + 1) = 2 · n− l < 2 · n. Hence, all pairs of vertices in V remaining in
G′′ are joined by an edge. Therefore, V ′′ ∩ V is a (perhaps empty) clique in G′′.

Fact: V ′′∩V is a clique of size at least n− l. This can be seen by assuming |V ′′∩V | < n− l. Note
that every vertex in W has degree in G′′ at most (n+ l) + |V ′′ ∩ V | < 2 · n. If there are at least two
vertices inW , then we have γR(G′′) < 2 ·n. On the other hand, if there is at most one vertex ofW left
in G′′, then every vertex in V ′′ ∩U has degree at most n+ l < 2 ·n. If |V ′′ ∩V | = 0, then there are at
most n+l+1 ≤ 2·n vertices left inG′′, rendering γR(G′′) = 2·n impossible. If |V ′′∩V | > 0, then the
only nonedges are {ui, vj} with ui ∈ U, vj ∈ V . But then we have max(dG′′(ui), dG′′(vj)) < 2 · n, a
contradiction. Hence, V ′′ ∩ V is a clique of size at least n− l.

Now we define V1 := V \(V ′′∩V), i.e. V1 contains exactly those vertices of V that are not present
in G′′. We will show that V1 is a vertex cover of G of size at most l. We clearly have that |V1| ≤ l.
Assume there is an edge {vi, vj} ∈ E with {vi, vj}∩V1 = ∅. Then {vi, vj} is a nonedge inG′, and by
definition of V1, it is also a nonedge in G′′. This is a contradiction to the fact that all pairs of vertices
in V remaining in G′′ are joined by an edge. Hence, V1 is a vertex cover of G. �

Since the transformation described above is polynomial time computable, the NP -completeness of
γR-DEGENERACY follows. ut

Complexity of Computing γRC

Again, we formulate the decision problem corresponding to γRC and prove its NP -completeness.
The proof again resembles the proof of the NP -completeness of CONTRACTION DEGENERACY.

30 3 Treewidth Lower Bounds: Methods, Relations and Complexity

Problem: γR-CONTRACTION DEGENERACY

Instance: Graph G = (V,E) with |V | ≥ 2 and integer k ≥ 0.
Question: Is γRC(G) ≥ k?

Theorem 25. The problem γR-CONTRACTION DEGENERACY is NP -complete.

Proof. It is easy to see that the problem belongs to NP , since we only have to guess a minor and then
compute the parameter γR of that minor in polynomial time. We prove the hardness by transforming
the known NP -complete problem VERTEX COVER, see [49]. Let a VERTEX COVER instance (G, l)
be given with G = (V,E), V = {v1, ..., vn} and n ≥ 2 (note that n < 2 implies a trivial VER-
TEX COVER instance). From this instance, we will construct a γR-CONTRACTION DEGENERACY

instance.

Construction:

We take l vertices u1, ..., ul, the complement Ḡ of G, a C4 which is a cycle with vertices w1, ..., w4,
and we take a vertex x. We add all edges between vertices ui and vj , between vj and wp and we
connect vertex x to all vertices wp, for i ∈ {1, ..., l}, j ∈ {1, ..., n}, p ∈ {1, ..., 4}. We call the
resulting graph G′, formally defined as follows (see Figure 3.3):

G′ := (V ′, E′) where

V ′ = {u1, . . . , ul} ∪ V ∪ {w1, . . . , w4} ∪ {x}
E′ = { {u, v} | u ∈ {u1, . . . ul} ∧ v ∈ V }

∪{ {vi, vj} 6∈ E | vi, vj ∈ V, vi 6= vj }
∪{ {v, w} | v ∈ V ∧ w ∈ {w1, . . . , w4} }
∪{ {w1, w2}, {w2, w3}, {w3, w4}, {w4, w1} }
∪{ {w, x} | w ∈ {w1, . . . , w4} }

u1

u2

ul

Ḡ C4 x

w3

w4

w1

w2

Figure 3.3. Graph G′ constructed in the proof of Theorem 25

The constructed instance of the γR-CONTRACTION DEGENERACY problem is (G′, n + 3). We
will show that there is a vertex cover for G of size at most l if, and only if γRC(G′) ≥ n+ 3.

Claim. If there is a vertex cover ofG of size at most l, then there is aE∗ ⊆ E′, such that γR(G′/E∗) ≥
n+ 3.

3.1 Contraction Degeneracy and Related Lower Bounds 31

Proof. Suppose there is a vertex cover of size at most l. Now, take a vertex cover V1 = {y1, . . . , yl}
of G of size exactly l. (If we add vertices to a vertex cover, we obtain again a vertex cover.) In G′,
we contract edge set E∗ defined as follows: E∗ := { {ui, yi} | i = 1, . . . , l}; i.e. each vertex yi in
the vertex cover V1 has the vertex ui contracted to it. We claim that for the resulting graph G′/E∗, it
holds that γR(G′/E∗) ≥ n + 3. Therefore, we claim that all vertices in G′/E∗, apart from x, have
degree n+3. Note that each vertex w in {w1, ..., w4} is adjacent to vertex x, to all vertices in V and to
exactly two other vertices from {w1, ..., w4}. Hence, all vertices in {w1, ..., w4} are adjacent to n+ 3
vertices. Now, we claim that the vertices of V form a clique in G′/E∗. Assume there are two vertices
z1 and z2 in V with z1 6= z2 and {z1, z2} 6∈ E(G′/E∗). Therefore, {z1, z2} ∈ E, and hence z1 or
z2 has to be in V1. Assume w.l.o.g. that z1 ∈ V1, i.e. there exists an i in {1, ..., l}, such that yi = z1.
Since we contracted {ui, yi} and {ui, z2} ∈ E(G′), we have that yi = z1 is adjacent to z2 in G′/E∗,
which is a contradiction. Hence, V forms an n-clique and therefore, the degree in G′/E∗ of a vertex
in V is n+ 3 (since every vertex in V is also adjacent to w1, ..., w4). Thus, γR(G′/E∗) = n+ 3, since
x is not adjacent to a vertex in V . �
Claim. If there is an E∗ ⊆ E′, such that γR(G′/E∗) ≥ n+ 3, then there is a vertex cover V1 ⊆ V of
G of size at most l.

Proof. Assume, there is a E∗ ⊆ E, such that γR(G′/E∗) ≥ n+ 3. First, we state some observations
about E∗ and the structure of G′/E∗. After that, we construct a set V1 ⊆ V and show that this is a
vertex cover of G.

Fact: l ≤ |E∗| ≤ l + 1. This is because, if |E∗| < l, then there are at least two vertices in
{u1, ...ul, x} left in G′/E∗, and hence, γR(G′/E∗) ≤ n. On the other hand, if l + 1 < |E∗|, then
G′/E∗ has at most n+ 3 vertices, and thus, γR(G′/E∗) ≤ n+ 2.

Fact: |E∗| 6= l+ 1. To see this, we assume |E∗| = l+ 1. From the previous fact, we already know
that at least l vertices from {u1, ...ul, x} have to be contracted to a neighbour. Depending on which of
these vertices were contracted, we distinguish two cases to show |E∗| 6= l + 1.
Case 1 ‘u1, ..., ul were contracted, and one more edge e was contracted in G′/E∗’: If e ∈ V × V
then the remaining vertices in V have degree at most n + 2, and hence, γR(G′/E∗) ≤ n + 2. If
e ∈ V × {w1, ..., w4}, then one vertex in V is adjacent to x, and all other vertices in V have degree
at most n+ 2; hence, γR(G′/E∗) ≤ n+ 2. If e ∈ {w1, ..., w4} × {w1, ..., w4} then the vertices in V
have degree at most n + 2, and therefore, γR(G′/E∗) ≤ n + 2. If e ∈ {x} × {w1, ..., w4} then two
vertices in {w1, ..., w4} will have degree at most n+2 and are not adjacent; thus γR(G′/E∗) ≤ n+2.
Case 2 ‘u1, ..., ui−1, ui+1, ..., ul were contracted, x was contracted w.l.o.g. to w1 and one more edge
e was contracted’: If e ∈ {ui} × V then this case was already considered above. If e ∈ V × V then
w2 and w4 have degree at most n + 1, and hence, γR(G′/E∗) ≤ n + 1. If e ∈ V × {w1, ..., w4}
then the vertices in {w1, ..., w4} \ e have degree at most n + 2; thus γR(G′/E∗) ≤ n + 2. If e ∈
{w1, ..., w4} × {w1, ..., w4} then the remaining vertices in {w1, ..., w4} have degree at most n + 2;
therefore, γR(G′/E∗) ≤ n+ 2.
In all cases and subcases, we concluded γR(G′/E∗) ≤ n+2, which contradicts our initial assumption
that γR(G′/E∗) ≥ n+ 3. Hence, |E∗| = l + 1 is not possible.

Fact: All vertices in {u1, ..., ul} were contracted, and x was not contracted. We know that exactly
l vertices in {u1, ..., ul, x} were contracted. If a ui ∈ {u1, ..., ul} was not contracted, then x was
contracted w.l.o.g. to w1. Thus, w2 and w4 have degree at most n + 2 and are non-adjacent; we
conclude γR(G′/E∗) ≤ n+ 2, which is a contradiction. Hence, after all the considerations above, the
only possibility is that u1, ..., ul were contracted to a neighbour, and x was not contracted.

Fact: The vertices of V form a clique in G′/E∗. Since x is not adjacent to any vertex in V , all
vertices in V must have degree n+ 3. This is only possible if V forms a clique.

32 3 Treewidth Lower Bounds: Methods, Relations and Complexity

Now, we know that G′/E∗ has the following structure. It consists of a clique on n vertices, all of
which are adjacent to the vertices of aC4. Furthermore, there is a vertex x adjacent to all vertices of the
C4. Hence, E∗ contains exactly l edges, one for each ui, i ∈ {1, ..., l}, with the other endpoint in V .
We will now define V1 ⊆ V and show that this is a vertex cover ofG. Let V1 :=

⋃
e∈E∗ e \

⋃
i=1,...l ui.

Clearly, |V1| = l. We claim that V1 is a vertex cover of G. Assume, there is an edge f = {z1, z2} in G
with V1∩f = ∅. Hence, f is not an edge in Ḡ and also not inG′. Since V forms an n-clique inG′/E∗,
edge f exists inG′/E∗, which means: f was created by contracting another edge {ui, vj} ∈ E∗, since
ui is adjacent to all vertices in V . This can only be the case if vj = z1 or vj = z2. According to the
definition of V1, we have: vj ∈ V1, which contradicts V1 ∩ f = ∅. Hence, V1 is a vertex cover of size
l. �

As G′ can be constructed in polynomial time, the NP -completeness of the γR-CONTRACTION DE-
GENERACY problem now follows. ut

We now strengthen the previous result by showing the NP -completeness even for bipartite graphs.

Theorem 26. It is NP -complete to decide whether γRC(G) ≥ k given a bipartite graph G and an
integer k.

Proof. In Section 3.1.4, we will observe that δC(G) ≥ 3 if, and only if tw(G) ≥ 3. Since δC(G) ≤
γRC(G) ≤ tw(G), we also have that γRC(G) ≥ 3 if, and only if tw(G) ≥ 3. It is known that graphs
of treewidth at most two can be recognised in linear time, e.g. by using reduction rules (see [3, 11])
or the method described in [9]. Therefore, it is no restriction that we assume for technical reasons that
γRC(G) ≥ 3 (and hence, also k ≥ 3).

The membership in NP is obvious. To prove NP -hardness, we use a polynomial transformation
from γR-CONTRACTION DEGENERACY on general graphs, which is known to be NP -complete (see
Theorem 25). Let an instance (G, k) of the γR-CONTRACTION DEGENERACY problem be given. We
subdivide every edge in G, i.e. we place a new vertex on each edge, and obtain G′, formally defined
in the following way:

G′ := (V ′, E′) where

V ′ = V ∪ { se | e ∈ E }
E′ = { {a, se}, {se, b} | e = {a, b} ∈ E }

The new constructed instance is (G′, k).G′ is a bipartite graph, as all edges inE ′ are between a vertex
in V and a vertex in { se | e ∈ E }. Now, we show that γRC(G) ≥ k if, and only if γRC(G′) ≥ k.

Claim. If γRC(G) ≥ k then γRC(G′) ≥ k.

Proof. Note that G is a minor of G′, since G = G′/E∗, where E∗ is set of edges to undo the subdivi-
sions. Therefore, any minor of G is also a minor of G′. Hence, the claim follows. �

Claim. If γRC(G′) ≥ k then γRC(G) ≥ k.

Proof. Let G1 � G′ be a minor of G such that γR(G1) ≥ k. If all vertices in { se | e ∈ E } were
contracted in G1 to a neighbour, then G1 is also a minor of G, and hence γRC(G) ≥ k. Furthermore,
if G1 contains two vertices of { se | e ∈ E }, then γR(G1) = 2, since all vertices in { se | e ∈ E }
are pairwise nonadjacent and have degree two. Therefore, we have to consider the case that exactly
one vertex s ∈ { se | e ∈ E } is present in G1. This vertex s subdivides an edge {u, v} ∈ E. We
distinguish the following cases.

3.1 Contraction Degeneracy and Related Lower Bounds 33

Case 1 ‘{u, v} 6∈ E(G1)’: Contracting edge {s, u} does not change the degree of any vertex in
V (G1) (apart from s). However, s cannot be the vertex determining γR(G1), since dG1(s) = 2.
This contraction decreases the number of pairs over which the minimum is taken when computing
γR(G1). Such a decrease can only increase the value of that minimum. Therefore, k ≤ γR(G1) ≤
γR(G1/{s, u}) ≤ γRC(G), since G1/{s, u} � G.
Case 2 ‘{u, v} ∈ E(G1)’: In this case u, v and s form a triangle. We define G2 := G1 − s =
G1/{s, u} = G1/{s, v}. Let {x, y} be a nonedge in G2 that determines γR(G2), with dG2(x) ≤
dG2(y). Since {u, v} ∈ E(G2), {x, y} 6= {u, v}. If {x, y} ∩ {u, v} = ∅, then dG2(x) = dG1(x) and
dG2(y) = dG1(y). Hence, we have that γR(G1) ≤ max(dG1(x), dG1(y)) = max(dG2(x), dG2(y)) =
γR(G2). We consider the case where {x, y} ∩ {u, v} 6= ∅ in two subcases.
Subcase 2a ‘x ∈ {u, v}’: We have dG1(x) ≥ dG2(x) and dG1(y) = dG2(y), and {s, y} is a nonedge
inG1. Therefore, we have that γR(G1) ≤ max(dG1(s), dG1(y)) ≤ max(dG2(x), dG2(y)) = γR(G2).
Subcase 2b ‘y ∈ {u, v}’: In this case, we have that dG1(x) = dG2(x) and dG1(y) ≥ dG2(y), and
{s, x} is a nonedge in G1. Hence, γR(G1) ≤ max(dG1(s), dG1(x)) ≤ max(dG2(x), dG2(y)) =
γR(G2).
Hence, we can conclude that γR(G1) ≤ γR(G2). Furthermore, note that G2 is also a minor of G, and
thus, we have that k ≤ γR(G1) ≤ γR(G2) ≤ γRC(G). �

Because the transformation described above is a polynomial one, the theorem follows. ut

Complexity of Computing δ2C

We formulate the decision problem corresponding to δ2C and state its NP -completeness.

Problem: δ2-CONTRACTION DEGENERACY

Instance: Graph G = (V,E) with |V | ≥ 2 and integer k ≥ 0.
Question: Is δ2C(G) ≥ k?

Theorem 27. The problem δ2-CONTRACTION DEGENERACY is NP -complete.

To prove this, we can use an easier variant of the proof for Theorem 25. When computing γR, we
consider non-adjacent vertices. However, we can observe that the proof of Theorem 25 also holds
when computing δ2.

3.1.4 Fixed Parameter Case of CONTRACTION DEGENERACY

Now, we consider the fixed parameter case of the CONTRACTION DEGENERACY problem, i.e. for a
fixed integer k, we consider the problem to decide for any given graph G whether G has a minor with
minimum degree k. Graph minor theory gives a fast answer to this problem. For a good introduction
to the algorithmic consequences of this theory, see [45].

Theorem 28. The CONTRACTION DEGENERACY problem can be solved in linear time when k is a
fixed integer with k ≤ 5, and it can be solved in O(n3) time when k is a fixed integer with k ≥ 6.

Proof. Let k be a fixed integer. Consider the class of graphs Gk = {G | G has contraction degeneracy
at most k − 1}. Gk is closed under taking minors: if H is a minor of G and H has contraction
degeneracy at least k, then G has also contraction degeneracy at least k. As every class of graphs
that is closed under minors has an O(n3) algorithm to test membership by Robertson-Seymour graph
minor theory (see [45]), the theorem for the case k ≥ 6 follows.

34 3 Treewidth Lower Bounds: Methods, Relations and Complexity

Figure 3.4. The icosahedron is a planar graph G with minimum degree δ(G) = 5.

Suppose now that k ≤ 5. There exists a planar graph Gk with minimum degree k (for example
for k = 5 the icosahedron, see [22] or Figure 3.4). Hence, Gk 6∈ Gk. A class of graphs that is closed
under taking minors and does not contain all planar graphs has a linear time membership test (see
[45]), which shows the result for the case that k ≤ 5. ut

It can be noted that the cases that k = 1, 2 and 3 are very simple: a graph has contraction degen-
eracy at least 1, if and only if it has at least one edge, and it has contraction degeneracy at least 2,
if and only if it is not a forest. For a graph to have contraction degeneracy at least 3, all vertices of
degree 2 or less have to be contracted recursively. If the result is a non-empty graph, the contraction
degeneracy is at least 3. Vertices of degree 2 can be contracted to either of the neighbours without
loss of generality. Thus, this gives a simple algorithm to identify the graphs with δC(G) ≥ 3. The
algorithm to determine if a graph has treewidth at least 3 works in exactly the same way, and hence,
graphs with δC(G) ≥ 3 are exactly those with tw(G) ≥ 3.

The result is non-constructive when k ≥ 6; when k ≤ 5, the result can be made constructive by for-
mulating the property that G has contraction degeneracy k in Monadic Second Order Logic (MSOL)
for fixed k. Our formulation of the CONTRACTION DEGENERACY problem is based on [25] and uses
macros defined there. Conn(V1, E1) is a macro that tests whether the vertex-set V1 is connected using
only the edges of E1. Adj(x, y, E) checks whether there is an edge in E that joins x and y. We first
give a macro that specifies if there is a path between two vertices x and y using only the vertices in V1

and edges in E1:

ConnectingPath(x, y, V1, E1)⇔ (∃V2 ⊆ V1)(x ∈ V2 ∧ y ∈ V2 ∧ Conn(V2, E1))

The problem CONTRACTION DEGENERACY can now be formulated as follows. We are constructing
a minor by specifying V0 – a non-empty set of vertices that remain in the graph or vertices that are
contracted. Vertices not in V0 are deleted. E0 is the set of edges that are contracted. We then require
that for every vertex v0 ∈ V0 there exist k vertices vi (1 ≤ i ≤ k) which are not connected by edges
in E0. These vertices are the neighbours of v0 after the edge-contractions, and hence, v0 has degree at
least k. If two such vertices would be connected by edges in E0, then they would be contracted to one
vertex, forming the same neighbour after contraction. Furthermore, there must be a path from v0 to
vi using an edge {x, y} that is not contracted and vertices that are not deleted. As an MSOL formula,
this is written as:

(∃V0, ∃E0) (¬V0 = ∅ ∧ V0 ⊆ V ∧ E0 ⊆ E)(∀v0 ∈ V0)(∃v1, ..., vk ∈ V0)

¬ConnectingPath(vi, vj , V, E0)(1 ≤ i < j ≤ k)

∧(∃x, y ∈ V0)(Adj(x, y, E)

∧ConnectingPath(v0, x, V0, E0)

∧ConnectingPath(y, vi, V0, E0)(1 ≤ i ≤ k))

3.1 Contraction Degeneracy and Related Lower Bounds 35

Thus, we can solve the problem as follows: the result of [83] applied to Gk, a planar graph
with minimum degree k, gives an explicit upper bound ck on the treewidth of graphs in Gk =
{G | G has contraction degeneracy at most k − 1}. Test if G has treewidth at most ck, and if so, find
a tree-decomposition with width at most ck with the algorithm of [9]. If G has treewidth at most ck,
use the tree-decomposition to test if the MSOL formula holds for G [39]; if not, we directly know that
G has contraction degeneracy at least k. It should also be noted that the constant factors hidden in the
O-notation of these algorithms are very large; it would be nice to have practical algorithms that do not
rely on graph minor theory. We summarise the different cases in the following table.

k Time Reference
1 O(n) trivial
2 O(n) G is not a forest
3 O(n) tw(G) ≥ 3

4, 5 O(n) [9, 39, 83], MSOL
fixed k ≥ 6 O(n3) [81, 82]
variable k NP -complete Theorem 22

Table 3.1. Complexity of contraction degeneracy

3.1.5 On the Contraction Degeneracy

In this section, we consider some useful observations on the contraction degeneracy. We start by ex-
amining the contraction degeneracy of connected components and blocks of a graph, compared to the
contraction degeneracy of the graph itself. Later, we will see that CONTRACTION DEGENERACY on
chordal graphs is trivial. Furthermore, we elaborate on an upper bound for the contraction degeneracy.

Connected Components and Blocks

When G is connected, δC(G) can also be defined as the maximum over all contractions of G of the
minimum degree of the contraction. This does not necessarily hold for disconnected graphs: when G
has connected components whose contraction degeneracy is smaller than the contraction degeneracy
of G, we must delete this component entirely to obtain the minor with maximum minimum degree.
The following lemma is easy to see.

Lemma 29. For any graph G, it holds that:

δC(G) = max
Gc
{δC(Gc) | Gc is a connected component of G}

The maximal 2-connected subgraphs of G are the blocks of G (blocks are also called 2-connected
components or biconnected components). Separating the graph into smaller subgraphs can help to
solve problems or to compute graph parameters. That is why we are interested whether we can com-
pute the contraction degeneracy of a graph, given the contraction degeneracy of the blocks of a graph.
For the treewidth of a graph, we have the following lemma.

Lemma 30 (e.g. [11, 87]). For any graph G, it holds that:

tw(G) = max{tw(G′) | G′ is a block of G}

36 3 Treewidth Lower Bounds: Methods, Relations and Complexity

G︷ ︸︸ ︷

︸ ︷︷ ︸
G1 ︸ ︷︷ ︸

G2

Figure 3.5. Graph G with two blocks G1 and G2

Unlike the treewidth, the contraction degeneracy of a graph does not equal the maximum contrac-
tion degeneracy over its blocks, as we can see from the example in Figure 3.5. It is easy to see that
δC(G) = 5 and δC(G1) = δC(G2) = 4. However, we can prove the following lemma.

Lemma 31. For any graph G, it holds that:

δC(G) ≥ max{δC(G′) | G′ is block of G}

Proof. This is easy to see, since all vertices and edges not belonging to the block G′ with maximum
contraction degeneracy, can be deleted in G′. Hence, G′ is a minor of G and therefore δC(G) ≥
δC(G′). ut

From Figure 3.5, we see another interesting consequence for the second smallest degree of a con-
traction or minor. By identifying a fixed vertex of minimum degree, we can compose a graph and show
that δ2C(G) ≤ tw(G) (which already has been shown using an alternative proof in Section 3.1.2).

Lemma 32. For any graph G, it holds that:

δ2C(G) ≤ tw(G)

Proof. Consider a minor G′ of G. Let v be a vertex of minimum degree in G′. If dG′(v) = 0, then
δ2(G′) = δ(G′ − v) ≤ tw(G′ − v) ≤ tw(G), since the minimum degree of a graph is a lower bound
for its treewidth.

If dG′(v) ≥ 1, then let v1, v2, ...v|V (G′)| be the sequence of vertices of G′ ordered according to

nondecreasing degree. We take c :=
⌈
dG′ (v2)
dG′ (v1)

⌉
copies ofG′, and we identify all vertices corresponding

to v1 as a single vertex v. Call the resulting graphG′′. Let u be a vertex in G′′ corresponding to a copy
of v2 in G′. Clearly, we have that c · dG′(v1) = dG′′(v) ≥ dG′′(u) = dG′(v2). Therefore, u is a vertex
of smallest degree in G′′. From Lemma 30, it follows that tw(G′) = tw(G′′). Because u is a vertex
with smallest degree, we have that dG′′(u) ≤ tw(G′′) = tw(G′) ≤ tw(G). Since this holds for all
minors G′ of G, we have δ2C(G) ≤ tw(G). ut

Chordal Graphs

Chordal graphs (also called triangulated graphs) form a special class of graphs that can be represented
by a so called clique-tree. In a chordal graph, each simple cycle C = v1, ..., vp of length p ≥ 4 has

3.1 Contraction Degeneracy and Related Lower Bounds 37

a chord, i.e. an edge connecting two nonconsecutive vertices of C. In other words, chordal graphs do
not contain any Cp as an induced subgraph for p ≥ 4. All maximal cliques of a chordal graph can be
arranged in a tree structure, such that a set of pairwise nondisjoint cliques forms a subtree of the tree
(see e.g. [11]). This clique tree can be computed in linear time [7], and is often very useful to solve
problems. However, exploiting this clique tree to compute the contraction degeneracy is not necessary.
Note that chordal graphs can be recognised in linear time, and also a maximum clique of a chordal
graph can be computed in linear time (see e.g. [51]).

Lemma 33. Let G = (V,E) be a chordal graph and let W ⊆ V be a maximum clique in G. Then we
have:

δC(G) = |W | − 1

Proof. For any graphG, it holds that: δC(G) ≤ tw(G), see Section 3.1.2. IfG is a chordal graph with
maximum clique W , we have (see e.g. [11]): tw(G) = |W | − 1, and therefore: δC(G) ≤ |W | − 1.
Note that G[W] is a minor of G and δC(G) ≥ δ(G[W]) = |W | − 1. ut

As mentioned in the previous proof, it holds for a chordal graph with maximum clique W that
tw(G) = |W | − 1 (see e.g. [11]). Therefore with Lemma 33, we have the following corollary.

Corollary 34. For any chordal graph G, it holds that:

δC(G) = tw(G)

An Upper Bound on the Contraction Degeneracy

In Chapter 4, we will see that the contraction degeneracy is a very successful treewidth lower bound.
However, as we will also see, it has its limits, e.g. on planar graphs; or more general: on graphs with
small genus (see also Section 3.1.6). Therefore, it is very interesting to have upper bounds on the
contraction degeneracy. Such upper bounds on lower bounds, which can be NP -hard to compute, can
inform us about the perspective to improve these lower bounds with better heuristics. As we will see
in Section 3.1.6, the genus of the graph determines an upper bound for the contraction degeneracy.
However, it is NP -hard to compute the genus of a graph [91]. Another idea for a contraction degen-
eracy upper bound is to take the maximum over all minors of G = (V,E) of the average degree d̄ of
the minor.

d̄(G) :=
2 ·m(G)

n(G)
d̄C(G) := max

G′
{d̄(G′) | G′ � G ∧ n(G′) ≥ 1}

It is clear that δC(G) ≤ d̄C(G) for all graphs G. Unfortunately, computing this parameter is also
NP -hard as we will now show.

Lemma 35. Let a graphG and an integer k ≥ 0 be given. The problem to decide whether d̄C(G) ≥ k
is NP -complete.

Proof. The proof is very similar to the proof that the problem CONTRACTION DEGENERACY is NP -
complete, see Section 3.1.3. Let (G, k) be a VERTEX COVER instance, with G = (V,E), n := |V |,
n > 2, 1 ≤ k < n, m := |E|, m ≥ 1. We construct the graph G′ as in Figure 3.6.

38 3 Treewidth Lower Bounds: Methods, Relations and Complexity

G′ := (V ′, E′) where

V ′ = {u1, ..., uk} ∪ V ∪ {w1, ..., w4n}
E′ = { {ui, v} | i ∈ {1, ..., k}, v ∈ V } ∪

{ {vi, vj} | vi, vj ∈ V, vi 6= vj , {vi, vj} 6∈ E} ∪
{ {v, wi} | v ∈ V, i ∈ {1, ..., 4n}} ∪ { {wi, wj} | i 6= j, i, j ∈ {1, ..., 4n}}

u1

u2

uk

w1

w2

w4n

cliqueḠ

Figure 3.6. Graph G′

The constructed instance of the problem stated in the lemma is (G′, 5n − 1). We will now show
that there is a vertex cover for G of size at most k, if and only if d̄C(G′) ≥ 5n− 1.

Claim. If there is a vertex cover for G of size at most k, then d̄C(G′) ≥ 5n− 1.

Proof. Let be given a vertex cover of size at most k; add some vertices to it to obtain a vertex cover
V1 = {v1, ..., vk} of size exactly k. Now we define the contraction-setE1 := { {ui, vi} | i = 1, ..., k}.
We will show that G′/E1 is a clique. Assume there is a nonedge e in G′/E1. By the construction this
can only be between two vertices x and y in V . Hence, let be e = {x, y}. Therefore, e is an edge in
G, and that is why e ∩ V1 6= ∅. W.l.o.g. let be x ∈ V1. That means there is an i ∈ {1, ..., k}, with
x = vi ∈ V1. Note that ui was contracted to x = vi, and thus, vi is adjacent to any vertex in V .
This is a contradiction. Therefore, G′/E1 is a clique with exactly 5n vertices, and hence, d̄C(G′) ≥
d̄(G′/E1) = 5n− 1. �
Claim. If d̄C(G′) ≥ 5n− 1, then there is a vertex cover for G of size at most k.

Proof. Note that n′ := |V ′| = k + 5n and m′ := |E′| = kn + n2−n
2 − m + 4n(4n−1)

2 . Since
d̄C(G′) ≥ 5n − 1, there is a minor G1 with d̄(G1) ≥ 5n − 1, such that G1 = G′/E1. Furthermore,
note that we can assume w.l.o.g. that G1 is a contraction of G′, i.e. there is a contraction-set E1,
because deleting edges does not increase the average degree, and instead of deleting vertices we can
contract them to a neighbour.

In G′, all vertices in V ∪ {w1, ..., w4n} have degree at least 4n, while the vertices in {u1, ..., uk}
have degree exactly n. In a series of derivations, we will now show that even deleting vertices in
{u1, ..., uk} increases the average degree. Let G2 be a minor of G′ with at least 5n vertices, such that
∃i ∈ {1, ..., k} with ui ∈ V (G2), n2 = n(G2) and m2 = m(G2).

2 < n
⇒ n2 < 2n2 − 2n
⇒ n2 < 8n2 − 2n− n(6n)
⇒ n2 < 8n2 − 2n− k(k + 5n− 1)

⇒ nk + 4n2 + n2 < nk + 4n2 + 16n2−4n
2 − k(k + n+ 4n− 1)

⇒ n · n2 ≤ n(k + 4n+ n) < nk + 4n2 + 4n(4n−1)
2 − k(k + n+ 4n− 1) ≤ m2

3.1 Contraction Degeneracy and Related Lower Bounds 39

Using just a few transformations, we see that n2 · n < m2 is equivalent to 2m2
n2

< 2(m2−n)
n2−1 (note that

n2 > 1), and hence, we have:

d̄(G2) =
2m2

n2
<

2(m2 − n)

n2 − 1
≤ 2(m2 − dG2(ui))

n2 − 1
= d̄(G2 − ui)

This means that the average degree in G2 is smaller than the average degree in G2 − ui. We now
examine the structure of G1. G1 has at least 5n vertices, otherwise it could not have average degree at
least 5n − 1. If G1 contains a vertex from {u1, ..., uk}, we can delete it, which increases the average
degree of G1. If the new G1 still has at least 5n vertices, we can iterate this process, stepwise delete
a vertex from {u1, ..., uk} and increasing the average degree. At the end, we obtain a graph with at
most 5n vertices and hence, with average degree at most 5n − 1. Therefore, we can conclude that
G1 must have at most 5n vertices, otherwise it contains a vertex in {u1, ..., uk}. To have average
degree 5n − 1, G1 must be a complete graph on 5n vertices. Hence, the contraction-set E1 (with
G′/E1 = G1) contains exactly k edges to contract all vertices in {u1, ..., uk} to a neighbour in V to
turn V into a clique. We define V1 :=

⋃
e∈E1

e∩ V , and show that V1 is a vertex cover for G. Clearly,
|V1| ≤ k. Assume that there is an edge e := {x, y} ∈ E with e ∩ V1 = ∅. Thus, e 6∈ E′. Since e is an
edge in G1, there was an edge {ui, x} or {ui, y} contracted to obtain G1. Hence, this edge is in E1,
and therefore x ∈ V1 or y ∈ V1, which is a contradiction. �

The transformation above is a polynomial time transformation. Furthermore, membership in NP of
the considered problem is obvious. Hence, the lemma follows. ut

It is interesting to note that the above proof also holds when replacing the average degree d̄ by
the minimum degree δ, because it is easy to see that d̄(G′) = δC(G′), for G′ as in the proof. The
origin of the upper bound, examined in this section, was the consideration of the following strategy.
Successively contract an edge {x, y} in a graph G, such that x and y have the minimum number of
common neighbours, and record the maximum of the average degree admax(G) encountered during
this process. It is clear that this strategy gives a lower bound on d̄C(G). Unfortunately, it is unlikely to
be an upper bound on the contraction degeneracy. If admax(G) would also be an upper bound on the
contraction degeneracy δC(G), then we would have δC(G) ≤ admax(G) ≤ d̄C(G). In the previous
proof, however, we constructed an instance G′ with δC(G′) = admax(G′) = d̄C(G′), and therefore,
if admax(G) would be an upper bound on the contraction degeneracy, then we could compute d̄C(G′)
or δC(G′) in polynomial time, solving VERTEX COVER in polynomial time. Summarising, we can
say that if δC(G) ≤ admax(G) for all graphs G, then P = NP .

3.1.6 Graphs of Genus γ

Harary writes in [54] that every planar graph G with at least four vertices has at least four vertices
of degree not exceeding five. Therefore, we have for a planar graph G that δ(G) ≤ δ2(G) ≤ 5. As
a consequence of this, we have that δC(G) ≤ δ2C(G) ≤ 5, since planar graphs are closed under
taking minors. This fact can also be observed in Chapter 4 in experiments computing δC and similar
parameters. In this section, we examine a few basic observations, similar to the result above and related
to the genus of a graph.

A graph G is embeddable in a surface S when it can be drawn on S in such a way that no two
edges intersect apart from intersecting at vertices. G is planar, iff G can be embedded in the plane
or in the sphere. We can generalise this concept by changing the underling surface S. One way of
changing S is to add a handle to it. A handle is a kind of bridge over which an edge can go to avoid

40 3 Treewidth Lower Bounds: Methods, Relations and Complexity

crossing the edge below the handle, see e.g. [53, 54]. The closed orientable surfaces S0, S1, S2, ... are
defined as follows. S0 is the sphere, and Sn+1 is obtained by adding a handle to Sn. The genus of Si
is i, for all i ≥ 0. We now review some definitions related to the embeddings of graphs on surface Si.
A region of a graph embedding is a component of the surface the graph is embedded in, obtained by
deleting the image of the graph from the surface (i.e. a component of the disconnected surface after
carving out the edges of the graph). A cellular embedding of a graph G in S is an embedding such
that each region is topologically equivalent to an open disk. A face of an embedding is the union of a
region and its boundary. Introductory chapters on planarity and its generalisations to higher genus can
be found in e.g. [53, 54]. See [67, 73] for more details about graphs on surfaces.

Definition 36. The genus γ(G) of the graph G is defined as follows.

γ(G) := min{i | G can be embedded in Si}

The corresponding decision problem: ‘Given a graph G and an integer k ≥ 0, is γ(G) ≤ k?’ is NP -
complete (see [91]). However, if k is fixed, there is a polynomially bounded algorithm for computing
the genus (see [47]). The most well-known and well-studied case are the planar graphs, i.e. graphs of
genus 0 (see e.g. [41, 57, 24]). Given a graph G and a minor G′ of G, it is easy to see that γ(G′) ≤
γ(G). The Euler-criterion for planar graphs also holds for higher genus:

Theorem 37 (see e.g. [53]). Let G = (V,E) be a connected graph with n vertices and m edges, and
let G be cellularly embedded in Sγ . Let f be the number of faces of this embedding. Then we have
that n−m+ f = 2− 2 · γ.

Since each face is surrounded by at least three edges, and each edge separates at most two faces, we
have the edge-face inequality 3 · f ≤ 2 · m (see e.g. [53]). With the last two formulas together, we
obtain an upper bound on the number of edges of a graph with genus γ and n vertices (see e.g. [73]):

m ≤ 3 · (n− 2 + 2 · γ) (3.1)

Lemma 38. Given a graph G with n vertices and genus γ, the following holds:

1. δ(G) ≤ 6 + 12·γ−12
n

2. δ2(G) ≤ 6 + 12·γ−6
n−1

Proof. (1.) It is obvious thatG has at least δ(G)·n
2 edges. Hence, we have that δ(G)·n

2 ≤ 3·(n−2+2·γ),
from which we can derive δ(G) ≤ 6 + 12·γ−12

n . (2.) At least n− 1 vertices have degree at least δ2(G)

in G. Therefore, G has at least δ2(G)·(n−1)
2 edges, which implies δ2(G) ≤ 6 + 12·γ−6

n−1 . ut

The following theorem is due to Ringel and Youngs and solves the genus problem for complete
graphs.

Theorem 39 (see e.g. [73, 78]). If n ≥ 3 then

γ(Kn) =

⌈
(n− 3) · (n− 4)

12

⌉

Lemma 40. For any given graph G with at least two vertices, it holds that:

δ2C(G) ≤ 5 + γ(G)

3.1 Contraction Degeneracy and Related Lower Bounds 41

Proof. With Lemma 38, we have:

δ2C(G) = max
G′�G, n(G′)≥2

δ2(G′) ≤ max
G′�G, n(G′)≥2

(
6 +

12 · γ(G′)− 6

n(G′)− 1

)

We first consider minors with at least 13 vertices. The following is easy to see:

max
G′�G, n(G′)≥13

(
6 +

12 · γ(G′)− 6

n(G′)− 1

)
≤
(

6 +
12 · γ(G)− 6

12

)
= 5.5 + γ(G)

We will show the same result for minors G′ with at most 12 vertices in a case distinction, using
Lemma 38, the fact that the genus does not increase when taking minors and that δ(G′) ≤ δ2(G′) ≤
n(G′)− 1. Let G′ be a minor of G with at least 2 and at most 12 vertices.

Case 0 ‘γ(G′) = 0’: We have that δ2(G′) ≤ 6 − 6
n(G′)−1 , which implies δ2(G′) ≤ 5 for all G′.

Therefore, δ2(G′) ≤ 5 ≤ 5 + γ(G).

Case 1 ‘γ(G′) = 1’: Here, we have that δ2(G′) ≤ 6 + 6
n(G′)−1 . If n(G′) ≤ 7, then δ2(G′) ≤ 6; and if

8 ≤ n(G′) ≤ 12, then δ2(G′) ≤ 6 + 6
n(G′)−1 < 7. Hence, δ2(G′) ≤ 6 ≤ 5 + γ(G).

Case 2 ‘γ(G′) = 2’: To show δ2(G′) ≤ 7 ≤ 5 + γ(G), we distinguish subcases.
Subcase 2a ‘n(G′) ≤ 8’: It is clear that δ2(G′) ≤ 7.
Subcase 2b ‘n(G′) = 9’: G′ 6= K9, since γ(K9) = 3 (see Theorem 39), therefore, G′ ⊆ K9 − e for
an edge e. The two endpoints of e have degree at most 7 in G′, hence δ2(G′) ≤ 7.
Subcase 2c ‘n(G′) = 10’: If δ2(G′) ≥ 8, then there are at least 9 vertices of degree at least 8
in G′. Thus, there are at least 8·9

2 = 36 edges. However, with inequality (3.1), there are at most
3 ·(n−2+2 ·γ) = 36 edges. Hence,G′ = K1∪K9, and therefore, γ(G′) ≥ 3. This is a contradiction,
so δ2(G′) ≤ 7.
Subcase 2d ‘n(G′) = 11’: We have δ2(G′) ≤ 6 + 18

n(G′)−1 < 8. Hence, δ2(G′) ≤ 7.

Case 3 ‘γ(G′) = 3’: Again, we use subcases to show δ2(G′) ≤ 8 ≤ 5 + γ(G).
Subcase 3a ‘n(G′) ≤ 9’: It is clear that δ2(G′) ≤ 8.
Subcase 3b ‘n(G′) = 10’:G′ 6= K10, since γ(K10) = 4 (see Theorem 39), therefore,G′ ⊆ K10−{e}
for an edge e. The two endpoints of e have degree at most 8 in G′, hence δ2(G′) ≤ 8.
Subcase 3c ‘n(G′) = 11’: If δ2(G′) ≥ 9, then there are at least 10 vertices of degree at least 9
in G′. Thus, there are at least 9·10

2 = 45 edges. However, with inequality (3.1), there are at most
3 · (n − 2 + 2 · γ) = 45 edges. Hence, G′ = K1 ∪ K10, and therefore, γ(G′) ≥ 4. This is a
contradiction, so δ2(G′) ≤ 8.
Subcase 3d ‘n(G′) = 12’: We have δ2(G′) ≤ 6 + 30

n(G′)−1 < 9. Hence, δ2(G′) ≤ 8.

Case 4 ‘γ(G′) = 4’: Once more, considering subcases helps to show δ2(G′) ≤ 9 ≤ 5 + γ(G).
Subcase 4a ‘n(G′) ≤ 10’: It is clear that δ2(G′) ≤ 9.
Subcase 4b ‘n(G′) = 11’:G′ 6= K11, since γ(K11) = 5 (see Theorem 39), therefore,G′ ⊆ K11−{e}
for an edge e. The two endpoints of e have degree at most 9 in G′, hence δ2(G′) ≤ 9.
Subcase 4c ‘n(G′) = 12’: We have δ2(G′) ≤ 6 + 42

n(G′)−1 < 10. Hence, δ2(G′) ≤ 9.

42 3 Treewidth Lower Bounds: Methods, Relations and Complexity

Case 5 ‘γ(G′) = 5’: In this case, we have that δ2(G′) ≤ 6+ 54
n(G′)−1 . If n(G′) ≤ 11, then δ2(G′) ≤ 10;

and if n(G′) = 12, then δ2(G′) ≤ 10, since in that case 6 + 54
n(G′)−1 < 11. Hence, δ2(G′) ≤ 10 ≤

5 + γ(G).

Case 6 ‘γ(G′) = 6’: For n(G′) ≤ 12, we automatically have that δ2(G′) ≤ 11 ≤ 5 + γ(G).

This case distinction is exhaustive, since a graph with at most 12 vertices can have genus at most 6, as
can be derived from Theorem 39. The lemma now follows. ut

It is easy to see that for any graph G with at least two vertices, it holds that δC(G) ≤ δ2C(G) (see
Section 3.1.2). Therefore, we have:

δC(G) ≤ δ2C(G) ≤ γ(G) + 5

Note that ∀G : δC(G) ≤ γ(G) + 5 can be proven directly by a similar and easier version of the proof
of Lemma 40.

That the genus γ(G) of a graph G determines an upper bound on γR(G) can be derived from the
fact that γRC(G) ≤ 2 · δ2C(G) (see Section 3.1.2) and Lemma 40. Taking both together, we have
γRC(G) ≤ 10 + 2 · γ(G).

To prove a similar statement for γRC using combinatorial arguments as in Lemma 40 might be
more complicated, because it seems to be difficult to combinatorially capture the property that the
considered vertices must be nonadjacent. The following result does not give better upper bounds, but
its proof helps to gain more insight.

Lemma 41. There exists a function c(γ), such that for all graphs G of genus γ, γR(G) ≤ c(γ).

Proof. Let be given an ordering v1, ..., vn of the vertices of G, such that d(vi) ≤ d(vi+1), for all
i ∈ {1, ..., n− 1}. We define δi(G) := dG(vi), for all i ∈ {1, ..., n}.

We define a function x(γ), that is related to the equation in Theorem 39 as follows:

x(γ) := min{k | γ(Kk) > γ}

Thus, x(γ) is the smallest number, such that every graph of genus at most γ does not contain Kx(γ) as
a subgraph. (For example, for planar graphs, i.e. γ = 0, we have x(0) = 5 by Kuratowski’s theorem,
see e.g. [53].) Now, note that any x(γ) vertices inG do not form a clique. This is also true for the x(γ)
vertices that have smallest degree in G, and hence, we have that γR(G) ≤ δx(γ)(G) (see Lemma 20).

We observe thatG has at least n−(x(γ)−1) vertices of degree at least δx(γ)(G). Therefore,G has

at least
δx(γ)(G)·(n−(x(γ)−1))

2 edges. Furthermore, with inequality (3.1),G has at most 3 · (n−2+2 ·γ)
edges. Altogether, this yields for a graph G with at least x(γ) vertices:

γR(G) ≤ δx(γ)(G) ≤ 6 · n− 2 + 2 · γ
n− x(γ) + 1

≤ max
n≥x(γ)

6 · n− 2 + 2 · γ
n− x(γ) + 1

= 6 · (x(γ)− 2 + 2 · γ)

The last equality follows from the next claim and the observation that the maximum is taken for
n = x(γ).

Claim. For n ≥ x,
n− 2 + 2γ

n− x+ 1
>
n+ 1− 2 + 2γ

n+ 1− x+ 1

3.1 Contraction Degeneracy and Related Lower Bounds 43

Proof: With equivalence transformation, we obtain that the claim is true iff (n − 2 + 2γ) · (n + 1 −
x+ 1) > (n+ 1− 2 + 2γ) · (n− x+ 1). This is equivalent to 3 · x(γ) + 2 · γ > 3, which holds, since
γ and x(γ) are nonnegative and x(γ) ≥ 5 is nondecreasing. �

If the graph G has at most x(γ)− 1 vertices, then δx(γ)(G) is not defined and γR(G) ≤ x(γ)− 2.
Note that x(γ)− 2 < 6 · (x(γ)− 2 + 2 · γ). Therefore, we define:

c(γ) := 6 · (x(γ)− 2 + 2 · γ) <∞ (3.2)

Now, it easily follows that γR(G) ≤ c(γ). ut

When γ and x(γ) are considered to be constant, it is easy to see that:

lim
n→∞

6 · n− 2 + 2 · γ
n− x(γ) + 1

= 6

It is interesting to note that we therefore can conclude that for any fixed γ and x(γ) (as in the previous
proof), δx(γ)(G) will be at most 6, when n is increased towards infinity. The same is also true for
δ(G), δ2(G) and γR(G), since δ(G) ≤ δ2(G) ≤ γR(G) ≤ δx(γ)(G).

Lemma 42. Let G be a graph of genus γ. Then γRC(G) ≤ c(γ), where c(γ) is as in equation (3.2).

Proof. Let be given G′ � G, with γR(G′) = γRC(G). Let x(γ) be defined as in the proof of
Lemma 41.

Claim. γ1 ≤ γ2 =⇒ x(γ1) ≤ x(γ2)

Proof: Let be given γ1 and γ2 with γ1 ≤ γ2. For each k, we have γ(Kk) > γ2 ⇒ γ(Kk) > γ1.
Therefore, γ(Kx(γ2)) > γ1 and hence, using the definition of x(.), we have x(γ1) ≤ x(γ2). �

We know that γ(G′) ≤ γ(G). Using Lemma 41 and the previous claim, we obtain γRC(G) =
γR(G′) ≤ 6 · (x(γ(G′))− 2 + 2 · γ(G′)) ≤ 6 · (x(γ(G))− 2 + 2 · γ(G)) = c(γ). ut

These upper bounds on δC(G), δ2C(G) and γRC(G) are not always sharp in the following sense.
For a graph G on n vertices, we have that δC(G) ≤ n − 1 = O(n), while there are graphs G on
n vertices (e.g. Kn, see Theorem 39), such that γ(G) = Θ(n2). The same is true for δ2C(G) and
γRC(G), since δ2C(G), γRC(G) = O(δC(G)) (see Section 3.1.2).

The genus of a graph determines not only an upper bound on δC(G), δ2C(G) and γRC(G); it also
determines a lower bound. Graph G is a minimal forbidden minor for S, if G cannot be embedded
in S, but every proper minor of G can be embedded in S. The next theorem is the Excluded Minor
Theorem, due to Robertson and Seymour.

Theorem 43 (see e.g. [73]). For each surface S, the set of all minimal forbidden minors for S is finite.

Lemma 44. There exist functions c1(γ), c2(γ) and c3(γ), such that for all graphs G of genus γ:

c1(γ) ≤ δC(G); c2(γ) ≤ δ2C(G); c3(γ) ≤ γRC(G);

Proof. Let F (S) denote the set of all minimal forbidden minors for S. We know thatG can be embed-
ded in Sγ , but not in Sγ−1. Therefore, G contains a minor G′, such that G′ ∈ F (Sγ−1). Since F (Si)
is finite (Theorem 43), we can easily define c1(γ) to be the minimum over all graphs in F (Sγ−1) of
the minimum degree of the graph. It is easy to see that we have:

44 3 Treewidth Lower Bounds: Methods, Relations and Complexity

c1(γ) := min
G1∈F (Sγ−1)

δ(G1) ≤ δ(G′) ≤ δC(G)

Hence, c1(γ) only depends on γ and it is a lower bound on δC(G) for any graph G of genus
γ. In the same way, we can use c2(γ) := minG1∈F (Sγ−1) δ2(G1) ≤ δ2C(G) and c3(γ) :=
minG1∈F (Sγ−1) γR(G1) ≤ γRC(G). ut

Note that the proof of Lemma 44 is nonconstructive, due to its use of Theorem 43. Even though F (S)
is finite for each surface S, its size can grow rapidly when the genus of the surface increases. For
example, F (S0) = {K5,K3,3}. Therefore, c1(1) = c2(1) = c3(1) = 3. However, Cattell et al. and
Mohar and Thomassen mention in [30, 73] that F (S1) probably contains more than 2000 graphs.

3.2 Maximum Cardinality Search Lower Bound

Maximum Cardinality Search (abbreviated: MCS) is a method to number the vertices of a graph. It
was first introduced by Tarjan and Yannakakis for the recognition of chordal graphs [90]. It works as
follows: We start by giving some vertex number 1. In step i = 2, . . . , n, we choose an unnumbered
vertex v that has the largest number of already numbered neighbours, breaking ties as we wish. Then
we associate number i to vertex v. An MCS ordering ψ can be defined by mapping each vertex to its
number ψ(v) in this procedure. For a fixed MCS ordering ψ, let vi := ψ−1(i).

Definition 45. Let a graphG and an MCS ordering ψ ofG be given, and let vi := ψ−1(i). The visited
degree vdψ(vi) of vi is defined as follows:

vdψ(vi) := dG[v1,...,vi](vi)

The visited degree MCSLBψ of an MCS ordering ψ is defined as follows:

MCSLBψ := max
i=1,...,n

vdψ(vi)

The maximum visited degree MCSLB(G) of graph G is defined as follows:

MCSLB(G) := max
ψ
{MCSLBψ | ψ is MCS ordering of G}

Lucena showed the following theorem.

Theorem 46 (see [70]). For any MCS ordering ψ of graph G, it holds that:

MCSLBψ ≤ tw(G)

Thus, an MCS numbering gives a lower bound on the treewidth of a graph. This lower bound is never
smaller than the degeneracy, but can be larger. However, it is NP -hard to compute MCSLB(G).

Lemma 47 (see [14]).

• For every graph G and MCS ordering ψ of G, it holds that: δD(G) ≤MCSLBψ.
• It is NP -complete to decide for any given graph G and integer k ≤ |V |, whetherMCSLB(G) ≥

k.

3.2 Maximum Cardinality Search Lower Bound 45

3.2.1 MCS Treewidth Lower Bound with Contraction

As introduced in the previous section, we obtain a lower bound on the treewidth of a graph from a
maximum cardinality search ordering. Motivated by this, we also study contraction in combination
with the MCS algorithm.

Definition 48.

MCSLBC(G) := max
G′�G

MCSLB(G′)

From the definition, it is evident that MCSLB(G) ≤MCSLBC(G), for any graph G.

Lemma 49. For any given graph G, it holds that:

δC(G) ≤MCSLBC(G) ≤ tw(G)

Proof. To see the first inequality, letG′ � G be given, such that δ(G′) = δC(G). Applying Lemma 47
and Definition 48, we have that δC(G) = δ(G′) ≤ δD(G′) ≤MCSLB(G′) ≤MCSLBC(G).

For the second inequality, let G′ � G be given, such that MCSLB(G′) = MCSLBC(G). Then
we have MCSLBC(G) = MCSLB(G′) ≤ tw(G′) ≤ tw(G), using Theorem 46 and Lemma 13.

ut

3.2.2 NP -completeness

We define four decision problems, and we show that each of these is eitherNP -complete orNP -hard,
respectively. For some of these, we also can show in a subsequent section that the fixed parameter cases
are tractable.

Problem: MCSLB WITH CONTRACTION

Instance: Graph G = (V,E), integer k.
Question: Does G have a contraction H , and H an MCS ordering ψ with the visited degree

of ψ at least k?

Problem: MCSLB WITH MINORS

Instance: Graph G = (V,E), integer k.
Question: Is MCSLBC(G) ≥ k? I.e. does G have a minor H , and H an MCS ordering ψ

with the visited degree of ψ at least k?

Problem: MINMCSLB WITH CONTRACTION

Instance: Graph G = (V,E), integer k.
Question: Does G have a contraction H , such that every MCS ordering ψ has visited degree

at least k?

Problem: MINMCSLB WITH MINORS

Instance: Graph G = (V,E), integer k.
Question: Does G have a minor H , such that every MCS ordering ψ has visited degree at

least k?

We now analyse the complexity of finding an optimal way of contracting and building an MCS
ordering to obtain the best lower bound possible with this method. Unfortunately, the problem to
determine if some bound can be obtained with MCS for a graph obtained from G by contracting
edges is also NP -complete.

46 3 Treewidth Lower Bounds: Methods, Relations and Complexity

Theorem 50. MCSLB WITH CONTRACTION is NP -complete.

Proof. Clearly MCSLB WITH CONTRACTION belongs to NP . We just have to guess a contraction
H and an MCS ordering ψ and check in polynomial time, whether the visited degree of ψ in H is at
least k.

To prove NP -hardness, we use a transformation from VERTEX COVER. Let a VERTEX COVER

instance (G, k) be given, where G = (V,E) with n = |V |, and k is an integer. We construct a graph
G′ in the following way:

Construction.

First, we take n+2 copies of the complement ofG. We call the vertices in these copies graph vertices.
We add k · (n + 2) extra vertices. Each extra vertex has degree n: it is adjacent to all graph vertices
in one copy of Ḡ and no other vertex; each copy has exactly k such extra vertices. Hence, in total, we
have k(n+ 2) extra vertices. Finally, we add an edge between each pair of graph vertices that belong
to different copies. Let G′ be the resulting graph, see Figure 3.7. The MCSLB WITH CONTRACTION

instance is (G′, n(n+ 2)− 1).

ḠḠ Ḡ

n+2︷ ︸︸ ︷

︸ ︷︷ ︸
k

︸ ︷︷ ︸
k

︸ ︷︷ ︸
k

Figure 3.7. The graph G′ constructed for the transformation

Now, we will show thatG′ has a contractionH that has an MCS ordering ψ with the visited degree
of ψ at least n(n+ 2)− 1, if and only if G has a vertex cover of size at most k.

Claim. IfG has a vertex cover of size at most k, thenG′ has a contractionH that has an MCS ordering
ψ with the visited degree of ψ at least n(n+ 2)− 1.

Proof: Let V ′ be a vertex cover of G of size at most k. Now, we perform the following in each copy
of Ḡ. Contract all the extra vertices to vertices in the vertex cover V ′, such that each vertex in V ′ has
at least one extra vertex contracted to it. This turns the set of graph vertices of G′ into a clique of size
n(n+2), because for each pair of nonadjacent graph vertices v, w inG′, {v, w} is an edge inG, so an
extra vertex, adjacent to v and w is contracted to v or w, after which the edge {v, w} is formed in H .
(Compare with the proof of Claim 3.1.3.) As H is a clique of n(n+ 2) vertices, any MCS ordering of
H has visited degree exactly n(n+ 2)− 1. �

Now, we will show the other direction. For this, we need a series of claims. Suppose that G′ has
a contraction H that has an MCS ordering ψ with the visited degree of ψ at least n(n + 2) − 1. Let
y be the first vertex in ψ that is visited with visited degree n(n + 2) − 1, and let Y be the vertices

3.2 Maximum Cardinality Search Lower Bound 47

that are visited up to y (including y). Note that y must be a graph vertex. With Theorem 46, H[Y] has
treewidth at least n(n + 2) − 1. Let X be the set of the vertices in H that are extra vertices that are
not contracted.

Claim. There are at most n+ 1 copies of Ḡ that have at least one extra vertex that belongs to X ∩ Y .

Proof: Consider the MCS ordering ψ up to the point that there are n+ 1 copies of Ḡ with at least one
extra vertex in X ∩ Y . As the set of visited vertices is connected, each copy must have a (possibly
contracted) graph vertex that is visited. Before we can visit a vertex inX of the last copy, we must first
visit a (possibly contracted) graph vertex of that copy. After that visit, each graph vertex has visited
degree at least n + 1, while vertices in X have degree at most n, so yet unvisited vertices in X will
not be visited before all graph vertices are visited, in particular, only after y is visited. �

So, there is at least one copy of Ḡ that has no uncontracted extra vertices in Y . Let Vi be the set of
vertices of that copy in Y .

Claim. There are at least n(n+ 2) graph vertices in Y .

Proof: If the opposite holds, then the treewidth ofH[Y] would be less than n(n+2)−1. Consider e.g.
the following triangulation of H[Y]: turn the set of (possibly contracted) graph vertices into a clique.
The maximum clique size will be less than n(n + 2) and the treewidth less than n(n + 2) − 1. This
contradicts the fact that the treewidth of H[Y] is at least n(n+ 2)− 1. �
Claim. Vi is a clique.

Proof: Assume the opposite. Let v and w be non-adjacent vertices in Vi. We can triangulate H[Y] as
follows: Add an edge between each pair of non-adjacent (possibly contracted) graph vertices, except
that we do not add the edge {v, w}. Since Vi does not have extra vertices that are not contracted, this
gives a chordal graph. The vertices in X are simplicial with degree at most n. After we remove these,
we get a graph that is obtained by removing an edge from a clique with at most n(n + 2) vertices,
yielding a graph with clique-size at most n(n+ 2)− 1. Hence the treewidth is at most n(n+ 2)− 2,
which is a contradiction. �

Because there are n(n + 2) graph vertices in Y , we know that |Vi| = n, and we cannot have
contracted other graph vertices to vertices in Vi, since then we would have less then n(n + 2) graph
vertices in Y . So, Vi was formed into a clique by the contraction of the k extra vertices of the copy to
the graph vertices in Vi. Let Z be the set of vertices in Vi that have an extra vertex contracted to it. We
have |Z| ≤ k.

Claim. Z is a vertex cover.

Proof: For each edge {v, w} ∈ E, v and w are non-adjacent in H . Thus, we must have an extra vertex
contracted to v or an extra vertex contracted to w. Therefore, we have v ∈ Z or w ∈ Z for each edge
{v, w} ∈ E. �

Hence, we can conclude that ifG′ has a contractionH that has an MCS ordering ψ with the visited
degree of ψ at least n(n+ 2)− 1, then G has a vertex cover of size at most k, which proves the other
direction. This concludes the proof of the NP -completeness of MCSLB WITH CONTRACTION. ut

The same proof can be used for the related problems given at the beginning of this section, ex-
cept that membership in NP is trivial only for MCSLB WITH MINORS, and we have no proof for
membership in NP for the other two problems. Therefore, we conclude the following statement.

Corollary 51. MCSLB WITH MINORS is NP -complete, and MINMCSLB WITH CONTRACTION

and MINMCSLB WITH MINORS are NP -hard.

48 3 Treewidth Lower Bounds: Methods, Relations and Complexity

3.2.3 Fixed Parameter Case

The fixed parameter case of MCSLB WITH MINORS can be solved in linear time with the help of
graph minor theory. Observing that the set of graphs {G |G does not have a minorH , such thatH has
an MCS ordering ψ with the visited degree of ψ at least k} is closed under taking of minors and does
not include all planar graphs (see [14]), the Graph Minor theorem of Robertson and Seymour and the
results in [9, 83] give us the following result. See again [45] for more background information.

Theorem 52. MCSLB WITH MINORS and MINMCSLB WITH MINORS are linear time solvable
for fixed k.

The fixed parameter cases of MINMCSLB WITH MINORS give an O(n3) algorithm (linear when
k ≤ 5), similar as for Theorem 28. Note that these results are non-constructive, and that the constant
factors in the O-notation of these algorithms can be expected to be too large for practical purposes.

3.3 Improved Graphs Might Improve Lower Bounds

A further improvement of the lower bounds can be obtained by using a method found by Clautiaux et
al. [32]. This method is based on ‘improved graphs’ and uses another treewidth lower bound algorithm
as a subroutine. In [32], the authors use the degeneracy as a subroutine, but one can also use other
algorithms. Our experiments showed that the contraction degeneracy heuristics generally outperform
the method of [32] with degeneracy, but when we combine the method of [32] with some of the
heuristics of Chapter 4, we get in several cases an additional small improvement of the lower bound.
We finally propose a heuristic that combines the method of [32] and contraction in another way, by
doing a contraction between every round of ‘graph improvement’. See Section 4.3 for more details.
This latter heuristic often costs considerably more time, but can give also significant increases to the
lower bound.

In [12], two notions of improved graphs were introduced. Let k be an integer. The (k + 1)-
neighbours improved graph G′ = (V,E′) of G = (V,E) is obtained as follows: we take G, and
then, as long as there are non-adjacent vertices u and v that have at least k + 1 common neighbours
in the graph, we add the edge {u, v}. This improvement step is motivated by the following lemma.

Lemma 53 (see [9, 12, 32]). Any tree-decomposition of G with width at most k is also a tree-
decomposition of the (k + 1)-neighbours improved graph G′ of G with width at most k, and vice
versa.

Clautiaux et al. use improved graphs to provide iterative methods to improve existing lower bounds
for treewidth [32]. They use an algorithm for δD for computing lower bounds, but their approach
works with every lower bound heuristic. Their algorithm LB N works as follows:

• Suppose we have a lower bound LB ≤ tw(G) on the treewidth of G (e.g. LB was computed with
an algorithm for the degeneracy).

• Use as hypothesis that LB = tw(G). Build the (LB + 1)-neighbours improved graph G′ of G.
(Note that if the hypothesis holds, then tw(G) = tw(G′))

• Compute a lower bound LB′ of G′ (e.g. with an algorithm for the degeneracy).
• If LB′ > LB, we have a contradiction, showing the hypothesis LB = tw(G) to be wrong.
• Therefore, LB < tw(G) and LB + 1 is also a lower bound.
• Set LB to LB + 1, and repeat the process until there is no contradiction.

3.4 Concluding Remarks 49

In Chapter 4, we propose several heuristics or exact algorithms to compute (lower bounds) of the
parameters we considered here. For simplicity, we will give these algorithms the same name (maybe
extended by a strategy used in the algorithm) as the parameter they are computing.

We see that the LB N algorithm uses another treewidth lower bound algorithm as a subroutine,
and thus, for every choice of such an algorithm, we obtain a different version of the LB N algorithm.
If algorithm Y is used as subroutine, then we call the resulting algorithm LBN(Y), e.g. the algorithm
discussed by Clautiaux et al. in [32] is the LBN(δD) algorithm.

In [32], Clautiaux et al. also propose a related method, that sometimes gives better lower bounds,
but also uses more time. Here, we have a different notion of improved graph. Let k be an integer. The
(k + 1)-paths improved graph G′′ = (V,E′′) of G = (V,E) is obtained by adding an edge {u, v} to
E for all vertex pairs u and v such that there are at least k + 1 vertex-disjoint paths between u and v
in G. Similar to Lemma 53, we have here the following.

Lemma 54 (see [9, 12, 32]). Any tree-decomposition of G with width at most k is also a tree-
decomposition of the (k + 1)-paths improved graph G′′ of G with width at most k, and vice versa.

We can build the (k + 1)-paths improved graph in polynomial time, as we can decide in polynomial
time whether there are at least k + 1 vertex-disjoint paths between a pair of vertices with help of
network flow techniques. (See [32] for more details on how an undirected graph is transformed into a
network flow instance, in order to find k+1 vertex-disjoint paths between a pair of vertices.) However,
the running time to compute the paths improved graph is much larger than for the neighbour version.
If we use (k + 1)-paths improved graphs instead of (k + 1)-neighbours improved graphs, then we
obtain a new lower bound heuristic for treewidth, called LB P in [32]. If we use as subroutine a
lower bound algorithm Y in this algorithm, we call the resulting algorithm LBP(Y).

3.4 Concluding Remarks

In this chapter, we gave a theoretical analysis of a number of graph parameters, all related to treewidth.
The first set of parameters is based on the degree of specific vertices in the graph, or in a subgraph
or minor of the graph. The other parameters are based on Maximum Cardinality Search. Each of the
parameters is a treewidth lower bound. Some of these parameter are a new combination of known
parameters with taking subgraphs or minors. Especially the parameters involving edge contraction
(i.e. minors) will experimentally prove to be a very vital idea.

We obtained results that show how the parameters are related to each other. We also examined
the computational complexity of the parameters. Here, it is interesting to note that all contraction
degeneracy problems are NP -hard, while the degeneracy problems are polynomial (see Section 4.2).
However, an exception is the computation of the γR-degeneracy, which we showed to be NP -hard.
Figure 3.8 represents some of the theoretical results. A thick line between two parameters indicates
that the parameter below is smaller or equal to the parameter above, as stated by Lemmas 16, 17, 18,
47 and 49. The thin line marks the border between polynomial time computability and NP -hardness
of the corresponding parameters, see Lemma 47, Theorems 22, 24, 25, 27, 50 and Corollary 51.

We also made some simple statements on the contraction degeneracy and related parameters. We
observed that the genus of a graph determines upper bounds on these parameters. As mentioned in
Section 3.1.6, these upper bounds are not sharp. It therefore remains a topic for further research to
find better bounds that might be based on the genus of a graph. Another topic for further investigation
is the relationship of the parameters MCSLB and MCSLBC compared to δC, δ2C or γRC. Some
observations in this direction are already given in [14].

50 3 Treewidth Lower Bounds: Methods, Relations and Complexity

δ

δ2DδC

δ2C

δD δ2

γR

γRD

γRC

tw

P

NPc

MCSLBC

MCSLB

Figure 3.8. An overview of some theoretical results

At the end of this chapter, we looked at a general method to improve treewidth lower bounds. This
method is based on so called graph improvements (see [9, 12, 32]). The potential of this method from
a theoretical point of view seems to be hard to analyse, but might be an interesting topic for further
considerations.

Apart from its function as a treewidth lower bound, the contraction degeneracy appears to be an
attractive and elementary graph measure, worth further study. For instance, interesting topics are its
computational complexity on special graph classes (for chordal graphs, see Section 3.1.5, and for
cographs see Chapter 5), or the complexity of approximation algorithms with a guaranteed perfor-
mance ratio.

4

Treewidth Lower Bounds:
Algorithms, Heuristics and Experiments

In the previous chapter, we described methods to improve on existing treewidth lower bounds, and
based on these methods, we introduced parameters that are also treewidth lower bounds. In this chap-
ter, we give an experimental evaluation of these treewidth lower bounds and examine how well they
perform in practice on input graphs from real world applications. Some of the treewidth lower bounds
can be computed in polynomial time, others are NP -hard to compute. Before looking at algorithms
and heuristics for computing treewidth lower bounds, we consider a data structure in Section 4.1 that
is used in some of the algorithms and heuristics. In Section 4.2, we consider algorithms for the lower
bounds that can be computed in polynomial time. For the lower bounds that are NP -hard to com-
pute, we propose several heuristics in Section 4.3. For simplicity, we will give these algorithms and
heuristics the same name (maybe extended by a strategy used in the algorithm or heuristic) as the
parameter they are computing. The experimental results of the algorithms and heuristics can be found
in Section 4.4. The content of this chapter is adapted from joint work with Hans L. Bodlaender and
Arie M. C. A. Koster, see [17, 18, 65, 66, 99]. The implementations of the heuristics were done by
Arie M. C. A. Koster.

4.1 A Bucket Adjacency-List Data Structure

In this section, we describe a data structure that is used in algorithms computing the degeneracy
δD and similar parameters (see Section 3.1.1). It extends the graph adjacency-list data structure by a
bucket structure (similar to bucket sort, sorted on vertex degree), enabling fast operations on this struc-
ture. It avoids a logarithmic factor that is typical for tree-based priority queues (as used in e.g. [63]).

Design of the Data Structure

The advanced adjacency-list of G = (V,E) is the extension of the standard adjacency-list data struc-
ture, where for every vertex pointers to its adjacent vertices are stored in a doubly linked list. We use
this advanced adjacency-list, and furthermore, we use cross pointers for each edge {vi, vj}. Such a
cross pointer connects vertex vi in the list for vertex vj directly with vertex vj in the list for vertex vi.

In addition to this advanced adjacency-list, we create n = |V | buckets that can be implemented
by doubly-linked lists B0, ..., Bn−1. List Bd contains exactly those vertices (or pointers to them) with
degree d in the current graph. We associate to every vertex v a pointer p(v) that points to the exact
position in the list Bd that contains v for the appropriate d. We also maintain a value d(v) for every
vertex v that simply is the degree of v, see Figure 4.1.

52 4 Treewidth Lower Bounds: Algorithms, Heuristics and Experiments

1

j

n

d(vi)

d

i

n− 1

d

0

j

1

i

j

n

i

j

cross-pointer

p(vj)

Figure 4.1. Data structure with doubly-linked adjacency-lists and cross pointers; buckets as doubly-linked lists in the middle
of the figure; j in bucket d means d(vj) = d which can also be seen in the array on the right.

Cost of Operations

Here, we briefly describe how the graph operations that we want to perform in our algorithms can be
carried out on our data structure and how much running time they need.

Construction.

Given a graph G = (V,E) with n = |V | and m = |E| as a (standard) adjacency-list, the advanced
adjacency-list structure with cross pointers as described above can be constructed in time O(n + m)
by traversing the (standard) adjacency-list and constructing doubly-linked lists and the cross pointers
during the traversal. Applying a bucket sort and building the pointers p(vi) for all i = 1, ..., n can also
be done in time O(n + m). It is an easy task to compute the values d(vi) for all i = 1, ..., n in the
required time.

Degree Update.

Let be given a vertex vi. Changing the degree of vi can be done in constant time in the following
way. The value of d(vi) gives us the bucket vi is contained in. From the new degree, we also have the
bucket in which vi has to be inserted. This insertion (at the start or end of the corresponding doubly
linked list), the deletion in the old bucket-list (using pointer p(vi)) and also updating d(vi) can all be
done in constant time.

Vertex Deletion.

Deleting a vertex vi means deactivating it in the advanced adjacency-list structure. For every vertex vj
in the adjacency-list of vi, we have to delete vi in the adjacency-list of vj (using cross pointers), and
we also have to update the degree of vj . All can be done in constant time per neighbour vj of vi. Also,
deleting vi from its corresponding bucket list can be done in constant time using p(vi). Therefore,
deleting vertex vi takes time O(d(vi)). Note that also d(vi) edges are deleted in the graph.

Edge Contraction.

Contracting an edge {vi, vj}, which results in a vertex that we also call vi, can be done as follows.
First, we traverse the list of neighbours of vj and for each such neighbour v, we exchange vj by vi in
the adjacency-list of v (using cross pointers). Therefore, all vertices v that were adjacent to vj are now
adjacent to vi according to their own lists. Now, we concatenate the adjacency-list of vj to the one of
vi, and we deactivate (i.e. delete) vj . This concatenation including checking for multiple occurrences

4.1 A Bucket Adjacency-List Data Structure 53

of vertices and occurrences of vertices vi and vj can be done in O(d(vi) + d(vj)) time as follows. We
use an additional (binary) array A running from 1 to n. We initialise it to be 0 on all positions. This
initialisation has to be done only once for all edge-contractions. Now we traverse the adjacency-list
of vi and set A(x) = 1 for all neighbours vx of vi. When we encounter vj in this pass, we do not
modify A, and we cut out vj of the adjacency-list of vi. We then traverse the adjacency-list of vj . For
each neighbour vy of vj with vy 6= vi, we can check in constant time, if vy is already included in
the adjacency-list of the new vertex, i.e. we check whether A(y) = 1. If this is the case, we process
the next neighbour, otherwise we include vy into the adjacency-list of vi. At the end, we traverse the
adjacency-list of vi once again to set all 1 to 0 in the array A. On vertices occurring more than once
a degree update has to be done. Furthermore, the degree of the new vertex (also called vi) has to be
updated. All can be done in O(d(vi) + d(vj)) time.

Find a vertex of smallest degree.

Maintaining a pointer δB to the nonempty bucket Bi with smallest index i helps to find a vertex with
minimum degree in constant time. Also this pointer may have to be updated when a vertex is deleted
or an edge is contracted. Note that in either case the degree of any vertex can only decrease by one,
and the number of vertices is also decreased by one. Assuming δB points to Bi, updating δB after
a vertex deletion or edge-contraction can be done as follows. If |Bi−1| ≥ 1 then we set δB to Bi−1,
otherwise to Bk with |Bk| ≥ 1, i ≤ k and k as small as possible. Hence, pointer δB can make at most
n single steps to the left, i.e. from a Bi to a Bi−1 (if the buckets are sorted as B0, ..., Bn−1). Thus this
pointer can make at most 2 · n single steps to the right, and therefore altogether it needs O(n) time
for a sequence of n operations (vertex deletions or edge contractions). Hence, we have amortised time
O(1) per operation.

Find a vertex of second smallest degree.

To find a vertex with second smallest degree in constant time, we use a pointer δ2B. Maintaining this
pointer is slightly more complicated than maintaining δB and involves a case distinction. Note again
that deleting a vertex or contracting an edge can only decrease the degree of any remaining vertex by
at most one. Let δ2B point to Bj . We first update δB. Updating δ2B can be done as follows.
Case 1 ‘δB points to Bl with l < j’:
Subcase 1a ‘Bj−1 is not empty’: If δB points to Bj−1 and |Bj−1| = 1 then we set δ2B to Bk with
|Bk| ≥ 1, j ≤ k and k as small as possible, otherwise we set δ2B to Bj−1.
Subcase 1b ‘Bj−1 is empty’: We set δ2B to Bk with |Bk| ≥ 1, j ≤ k and k as small as possible.
Case 2 ‘δB points toBj’: If |Bj | ≥ 2 then we leave δ2B unchanged, otherwise we set δ2B toBk with
|Bk| ≥ 1, j < k and k as small as possible.
Case 3 ‘δB points to Bl with j < l’: If |Bl| ≥ 2, then we set δ2B to Bl, otherwise to Bk with
|Bk| ≥ 1, l < k and k as small as possible.
Also this pointer makes at mostO(n) single steps to the left and hence it makes amortisedO(1) single
steps per operation, for a sequence of n operations.

Lemma 55. Let be given a graph G = (V,E) with n = |V | and m = |E|. There exists a data
structure, such that a sequence of O(n) vertex deletions and searches for a vertex with smallest or
second smallest degree costs O(n+m) time.

Proof. Using the data structure described in this section, the result follows directly from the analysis
of the running time of the corresponding operations. ut

54 4 Treewidth Lower Bounds: Algorithms, Heuristics and Experiments

A sequence of operations that includes edge-contractions can have an asymptotically larger running
time when using the described data structure. Possibly, many (Ω(n)) vertices and/or edges are in-
spected at each edge-contraction: concatenating two adjacency-lists and checking for double occur-
rences of vertices can cost Ω(n) time per edge contraction.

Another possibility to implement this data structure is to keep the adjacency-lists sorted, e.g. in
nondecreasing order of the name (represented as a numerical index) of the vertices. The initial sorting
can be done by a linear time sorting algorithm like e.g. radix sort. Sorted adjacency-lists will ease the
implementation of the edge-contraction operation, because this could be done very similarly to the
‘merge’-procedure of the ‘merge’-sort algorithm (see e.g. [36]). Therefore, it is easy to see that the
sorted adjacency-lists can be maintained by all the described operations within the same complexity
bound.

Experimental Comparison

The data structure was implemented in C++ and experimentally evaluated on a PC with a 3.0 GHz
Intel Pentium 4 processor running under Linux. However, our implementation does not strictly follow
the description above. Instead, it uses and extends libraries and procedures provided by the Boost C++
libraries (especially the Boost Graph library; see [23] for more information on Boost). An implemen-
tation from scratch, i.e. not building upon existing libraries such as Boost, might yield different results
and running times.

For comparison, we use exact algorithms and heuristics which are explained in more detail in
Sections 4.2.1, 4.2.3 and 4.3.1. We tested each of the algorithms with the bucket adjacency-list and
with a tree-based priority queue for the graph operations as used in e.g. [17, 18, 63]. In Table 4.1,
we see the results of the δD, δ2D and δC lower bound algorithms and heuristics (see the columns
labelled ‘LB’) for a selection of input graphs. We also see the running times (columns headed by
‘CPU’) obtained with a tree-based priority queue (see columns ‘tree’ in Table 4.1) and the bucket
adjacency-list (see columns ‘bucket’ in Table 4.1).

instance size δD δ2D δC(least-c)
tree bucket tree bucket tree bucket

|V | |E| LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU
link 724 1738 4 0.01 4 0.01 4 5.22 4 3.15 11 0.04 11 0.04
munin1 189 366 4 0.00 4 0.00 4 0.29 4 0.19 10 0.01 10 0.01
munin3 1044 1745 3 0.01 3 0.01 3 11.02 3 5.65 7 0.03 7 0.02
pignet2 3032 7264 4 0.05 4 0.03 4 108.91 4 64.28 38 0.21 38 0.22
celar06 100 350 10 0.00 10 0.00 11 0.09 11 0.09 11 0.01 11 0.00
celar07pp 162 764 11 0.00 11 0.01 12 0.30 12 0.24 15 0.01 15 0.01
graph04 200 734 6 0.01 6 0.01 6 0.42 6 0.31 19 0.02 20 0.02
rl5934-pp 904 1800 3 0.01 3 0.01 3 9.18 3 5.13 5 0.04 5 0.04
school1 385 19095 73 0.03 73 0.04 74 7.61 74 10.15 122 0.84 122 0.94
school1-nsh 352 14612 61 0.02 61 0.03 62 5.55 62 7.14 106 0.62 106 0.70
zeroin.i.1 126 4100 48 0.01 48 0.01 48 0.58 48 0.76 50 0.05 50 0.05

Table 4.1. Comparison of running times of basic algorithms with two different data structures: tree-based priority queue
and bucket adjacency-list

The running times of the algorithm for computing δD are nearly equal for the two data structures.
This is likely explained by the fact that these running times are very small, and hence, large absolute
improvements are not possible and relative improvements are difficult to observe.

4.2 Exact Algorithms for Some Treewidth Lower Bounds 55

Similar behaviour can be observed in the columns representing the running times of the heuristic
computing δC. Also these values are very small and a clear trend is difficult to be identified. It is
interesting that a different lower bound value for ‘graph04’ is obtained with the two different data
structures. This is possible, because the corresponding algorithm is a heuristic and does not always
compute the exact value. Therefore, different data structures may lead to a different order in which
the vertices are processed. This, in turn, can lead to different results.

The running times of the algorithm computing δ2D are the largest, and here, we can see the fol-
lowing trend (that can also be observed in the other columns to a much smaller degree): If the graph
is rather sparse (like the first eight graphs in Table 4.1), then the implementations using the bucket
adjacency-list gives smaller running times. On the other hand, if the graph is rather dense (as the last
three graphs in Table 4.1), then the tree-based priority queue is faster.

4.2 Exact Algorithms for Some Treewidth Lower Bounds

Fortunately, not all parameters introduced in Section 3.1.1 are NP -hard to compute. (See Figure 3.8
for an overview over the computational complexity of the parameters.) For some of them, the exact
value can be computed in polynomial or even linear time. In this section, we describe and analyse
these polynomial time algorithms.

4.2.1 Algorithms for δ, δ2 and δD

An implementation of algorithms to compute δ and δ2 is straightforward. It is obvious that both pa-
rameters can be computed exactly in linear time. The degeneracy δD can be computed as described
at the beginning of Section 3.1. Using the data structure, examined in Section 4.1, it is easy to see that
the degeneracy can be computed in linear time O(n+m).

4.2.2 Algorithms for γR

Ramachandramurthi shows in [76] that γR can be computed inO(n+m) time. In our experiments, we
use a different algorithm that does not use an adjacency-matrix. Our algorithm appears to be simpler
and is easy to implement. Let a sequence v1, ..., vn of the vertices of the graph be given, such that
for all i ∈ {1, ..., n − 1}, d(vi) ≤ d(vi+1). Our algorithm and the algorithm in [76] are based on the
fact that γR is determined by the leftmost vertex in this sequence that is not adjacent to all vertices to
the left of it in the sequence (see Lemma 20). We have for each vertex vi (i ∈ {1, ..., n}) a counter
c(vi) that is initially 0. This counter c(vi) counts the number of neighbours of vi that are left of vi.
Therefore, it is easy to find the first vertex with i 6= c(vi) + 1.

γR-Algorithm

1 obtain sequence v1, ..., vn by bucket sorting
the vertices according to nondecreasing degree

2 for all j ∈ {1, ..., n}
initialise counter c(vj) := 0

endfor
3 i := 1
4 while i = c(vi) + 1 and i < n do

56 4 Treewidth Lower Bounds: Algorithms, Heuristics and Experiments

5 for all u ∈ N(vi) do
6 c(u) := c(u) + 1
7 endfor
8 i := i+ 1
9 endwhile
10 return d(vi)

Note that after the loop of lines 5-7 is executed, we have for all i ∈ {1, ..., n} that c(vi) equals
the number of neighbours of vi in {v1, ..., vi}. It is easy to see that the algorithm runs in O(n + m)
time, since for each vertex (line 4 to 9), we make at most one pass over its adjacency-list (line 5 to 7).
Bucket sorting and initialising (line 1-3) also can be done in O(n+m) time.

4.2.3 An Algorithm for δ2D

First we note that the simple strategy to compute the degeneracy δD of a graphG as described in Sec-
tion 3.1 cannot be used to compute δ2D. This becomes evident when considering the example graph
in Figure 4.2. There, we see that successively deleting a vertex of smallest degree (in the example of

u

G

w

v

Figure 4.2. Counterexample to algorithm for computing δ2D by deleting smallest degree vertices

Figure 4.2 the vertex of smallest degree is v) does not lead to a subgraph where δ2 is maximal, i.e.
δ2D(G \ {v}) = 3. Instead, we must delete vertex u (a vertex with second smallest degree), and we
obtain δ2D(G \ {u}) = δ2D(G) = 4. One could now conjecture that deleting a vertex with second
smallest degree might be correct, but it is also easy to find a counterexample for this approach.

One possible strategy to compute δ2D is as follows. We can fix a vertex v of which we suppose it
will be the vertex of minimum degree in a subgraph G′ of G with δ2(G′) = δ2D(G). Starting with
the original graph, we successively delete a vertex in V (H) \ {v} of smallest degree, where H is the
current considered subgraph of G (initially: H = G). Since we do not know whether our choice of v
was optimal, doing this for all vertices v ∈ V leads to a correct algorithm to compute δ2D(G). Using
the bucket data structure, described above, this method can be implemented to take O(n · m) time.
The following pseudo-code makes this algorithm more precise.

δ2D-Algorithm

1 delta2D := 0
2 for each v ∈ V do
3 H := G
4 repeat
5 if δ2(H) > delta2D then delta2D := δ2(H) endif

4.3 Heuristics 57

6 V ∗ := V (H) \ {v}
7 let u ∈ {w ∈ V ∗ | 6 ∃w′ ∈ V ∗ : dH(w′) < dH(w)}
8 H := H[V (H) \ {u}]
9 until |V (H)| = 1
10 endfor
11 return delta2D

Lemma 56. The δ2D-Algorithm computes the parameter δ2D(G) and can be implemented to run
in O(n ·m) time for any given connected graph G = (V,E) with |V | ≥ 2.

Proof. First, we will show that the returned value of delta2D = δ2D(G). Note that every H con-
sidered in the algorithm is a subgraph of G. Therefore, it is easy to see that delta2D ≤ δ2D(G),
since:

delta2D = max
H
{δ2(H) | H occurs during the run of the algorithm}

Now, we show that there is a subgraph H ⊆ G considered during the algorithm with δ2(H) =
δ2D(G). Let G′ = (V ′, E′) ⊆ G with δ2(G′) = δ2D(G) be given. Furthermore, let v ∈ V ′ be
a vertex of minimum degree in G′. We consider the run of the for-loop of the δ2D-Algorithm,
where v was chosen (in Line 2) to always remain in the graph. Note that the algorithm selects and
deletes successively a vertex u 6= v whose degree is as small as possible. Now, consider the first
time when in the repeat-loop, i.e. in the current graph H , a vertex u ∈ V ′ is selected to be deleted.
Because u is the first such vertex, we have G′ ⊆ H . Therefore, for all w ∈ V ′ \ {v}, we have
δ2(G′) ≤ dG′(w) ≤ dH(w). Hence, since u ∈ V ′ \ {v}, it holds that δ2(G′) ≤ dH(u). Because u is
a vertex in V ∗ = V (H) \ {v} with degree in H as small as possible, all vertices in V ∗ have degree
at least dH(u) ≥ δ2(G′). Therefore, we have δ2(H) ≥ δ2(G′) = δ2D(G). Hence, the algorithm
considers a graph H ⊆ G with δ2(H) = δ2D(G). This proves our initial claim delta2D = δ2D(G).

It is not difficult to see that the algorithm uses O(n · m) time when we use the data structure
described in Section 4.1. ut

4.3 Heuristics

In this section, we give heuristics for the treewidth lower bound parameters from Chapter 3 that are
NP -hard to compute. Some of these heuristics are build upon the algorithms given in Section 4.2.
Each heuristic gives a lower bound for treewidth. We describe the heuristics, and in some cases, give
some analysis of them. In Section 4.3.1 we propose and analyse some heuristics for the contraction de-
generacy δC. Some heuristics for computing δ2C, γRD and γRC are given in Sections 4.3.2 to 4.3.4.
In Section 4.3.5, we discuss heuristics for MCSLBC. In Section 4.3.6, we look at the LBN and
LBP heuristics. These can be combined with any of the other heuristics, but we also propose a new
heuristic where contractions alternate with constructions of neighbours or paths improved graphs. An
experimental evaluation of the heuristics is given in Section 4.4.

4.3.1 δC-Heuristics

An almost trivial heuristic for the contraction degeneracy is the degeneracy δD(G). As mentioned
earlier, it can be computed in linear time, by iteratively selecting a vertex of minimum degree, and
deleting it and its incident edges. The largest minimum degree encountered in these steps is the de-
generacy.

58 4 Treewidth Lower Bounds: Algorithms, Heuristics and Experiments

From this algorithm, we derive three δC heuristics. In these heuristics, we select a vertex v of
minimum degree and instead of deleting it, we contract it with one of its neighbours u. In each case,
the heuristic outputs the maximum over all vertices of its degree when it was selected as minimum
degree vertex. (Note that, sometimes, the δD algorithm is called MMD, which stands for ‘Maximum
Minimum Degree’, and the δC heuristics are sometimes called MMD+.) Clearly, this is a lower bound
on the contraction degeneracy of a graph. We consider three strategies how to select a neighbour:

• min-d selects a neighbour with minimum degree. This heuristic is motivated by the idea that the
smallest degree is increased as fast as possible in this way.

• max-d selects a neighbour with maximum degree. This heuristic is motivated by the idea that we
end up with some vertices of very high degree.

• least-c selects a neighbour u of v, such that u and v have the least number of common neighbours.
Note that for each common neighbour w of u and v, the two edges {u,w} and {v, w} become
the same edge in the graph after contracting {u, v}, meaning that for each common neighbour,
effectively one edge is removed from the graph. Thus, the least-c heuristic is motivated by the idea
to delete as few edges as possible in each iteration in order to get a high minimum degree.

We call the resulting heuristics δC(min-d), δC(max-d) and δC(least-c). We observe that each of
the δC heuristics gives a value that is at least the degeneracy: consider a subgraph H of G with
minimum degree the degeneracy of G. Consider the graph G′ that we currently have just before the
first vertex v from H is to be contracted by the heuristic. All neighbours of v inH are also neighbours
of v in G′, hence the algorithm gives as bound at least the degree of v in H , hence at least the
degeneracy of G.

In a recent paper, Gogate and Dechter [50] propose a branch-and-bound algorithm for treewidth
with a good anytime performance. (An anytime algorithm is an algorithm for an optimisation problem
that, when stopped at any time, returns the best solution found so far. The more time the algorithm
is given, the better the result. In that sense, a branch-and-bound algorithm is always an anytime algo-
rithm.) Independently of this work, Gogate and Dechter also propose the lower bound heuristic which
we call the δC(min-d) heuristic. We compare this heuristic with our other heuristics and see that the
δC(least-c) heuristic almost always outperforms the δC(min-d) heuristic. For more details, see [50],
Section 3.1 and Section 4.4.3.

While the heuristics (and especially the least-c heuristic) do often well in practice, unfortunately,
each of the heuristics can do arbitrarily bad. In the next four paragraphs, we give examples of graphs
where there is a large difference between the contraction degeneracy and a possible lower bound for
it obtained by one of the four considered heuristics described above.

A bad example for the δD heuristic

The δD algorithm can perform arbitrarily bad when considered as a δC heuristic. To see this, take a
clique with n vertices, and then subdivide every edge. LetG be the resulting graph. Clearly, δ(G) = 2.
We also have δD(G) = 2 since all subdivisions have degree 2 and must be deleted, which also deletes
all edges in G. However, δC(G) = n − 1, because undoing the subdivisions results in an n-clique
with minimum degree n− 1.

A bad example for the δC(max-d) heuristic

An example where the δC(max-d) heuristic can perform arbitrarily bad is not hard to find. One simple
example is the following. Take a clique with n vertices, subdivide every edge, and then add one

4.3 Heuristics 59

universal vertex x. Let G be the resulting graph. The δC(max-d) heuristic will contract each vertex
to x, and hence will give 3 as a result. However, δC(G) = n, since if we undo the subdivisions by
contracting the subdivision vertices to the clique vertices, we obtain a clique with n+ 1 vertices.

A bad example for the δC(min-d) heuristic

The example where the δC(min-d) heuristic performs bad is somewhat more involved. For each r,
we build a graph where the δC(min-d) heuristic can possibly give a lower bound of 3, while the
contraction degeneracy of the graph is r. We assume, as ‘adversary’, that we can decide in which way
tie-breaking is done (i.e. the adversary can select a vertex among those which have minimum degree).

Let r ≥ 3 be some integer. Build a graph Gr as follows. We take for each i, j, 1 ≤ i < j ≤ r
a vertex vij . We take for each i, 1 ≤ i ≤ r a vertex wi, and we take another vertex x. Now, we add
edges {vij , wi}, {vij , wj} and {vij , x}, for each i, j, 1 ≤ i < j ≤ r.

To the graph thus obtained, we add a number of cliques. Each clique consists of three new vertices
and one vertex of the type wi, 1 ≤ i ≤ r or x. We have one such clique that contains x. For each i, we
take r2 such cliques that contain wi, 1 ≤ i ≤ r. (It is possible to make a more compact construction,
using about r2/6 cliques.) We call the new vertices in these cliques the additional clique vertices. In
this way, each wi has a degree that is larger than 3r2. Let Gr be the resulting graph, see Figure 4.3.

x w1 wi wj wr

︸ ︷︷ ︸
r2 triangles

vij v(r−1)rv12

Figure 4.3. The structure of Gr

Lemma 57. Let r ≥ 3. The contraction degeneracy and treewidth of Gr both equal r.

Proof. If we contract v1r to wr and each other vertex of the form vij to wi, and each additional clique
vertex to its neighbour of type wi or x, then the resulting graph is a clique on {wi | 1 ≤ i ≤ r} ∪ {x}.
Each vertex in this clique has degree r, so the contraction degeneracy of Gr is at least r, and hence
the treewidth of Gr is at least r.

If we add to Gr an edge between each distinct pair of vertices in {wi | 1 ≤ i ≤ r} ∪ {x}, then
we obtain a chordal graph with maximum clique size r + 1. So, the treewidth of Gr is at most r, and
hence also its contraction degeneracy is at most r. ut

Lemma 58. The δC(min-d) heuristic can give a lower bound of 3 when applied to Gr.

Proof. Consider the following start of a sequence of contractions: first, contract the vertices of the
form vij one by one to x, for all i, j, 1 ≤ i < j ≤ r. Note that the δC(min-d) heuristic can start with
this sequence: at each point during this phase, the vertices of the form vij have degree 3, which is the

60 4 Treewidth Lower Bounds: Algorithms, Heuristics and Experiments

minimum degree in the graph, and the degree of x is at most r(r − 1)/2 + 3 + r, which is less than
the degree of vertices of the form wi, which have degree at least 3r2. So, during this first part of the
running of the algorithm, the bound for the contraction degeneracy is not larger than 3.

After all vertices vij have been contracted to x, the graph has the following form: x is adjacent to
all wi; there are no edges between vertices wi, wi′ , i 6= i′; and then there are a number of four-cliques
that have one vertex in common with the rest of the graph. This is a chordal graph with maximum
clique size 4. So, this graph has treewidth 3, and hence contraction degeneracy at most 3. Hence, the
min-d heuristic cannot give a bound larger than 3 in the remainder of the run of the algorithm. Thus,
the maximum bound it obtains can be 3. ut

Corollary 59. The δC(min-d) heuristic can give a solution that is a factor of Ω(
√
n) away from

optimal.

We can use cliques with four instead of three additional clique vertices. In that case, it holds that
every possible run of the δC(min-d) heuristic gives a lower bound of 4 on the graph.

A bad example for the δC(least-c) heuristic

The example for the δC(least-c) heuristic is a modification of the one for the δC(min-d) heuristic.
Let r ≥ 3 again be an integer. We takeGr and modify it as follows. Each edge of the form {vij , wi}

or {vij , wj} is replaced by the gadget given in Figure 4.4. In words: the edge is subdivided, and we
add a clique with three new vertices and the subdivision vertex to the graph. Let G′r be the resulting
graph.

vij wi or wj

Figure 4.4. The gadget that replaces edges of the form {vij , wi} or {vij , wj}

Lemma 60. Let r ≥ 3. The contraction degeneracy and treewidth of G′r both equal r.

Proof. We can contract G′r to Gr: contract each structure as in Figure 4.4 to the vertex of the form
vij . So, the contraction degeneracy of G′r is at least the contraction degeneracy of Gr, hence at least
r. Therefore, the treewidth of G′r is at least r.

The treewidth ofG′r is at most r: add toG′r edges between each pair of distinct vertices in {wi | 1 ≤
i ≤ r} ∪ {x}. Then, for each i, j, 1 ≤ i < j ≤ r, add edges {vij , wi} and {vij , wj}. This gives a
chordal graph with maximum clique size r + 1. So, the treewidth of G′r is at most r. Hence, its
contraction degeneracy is also at most r. ut

Lemma 61. The δC(least-c) heuristic can give a bound of 3 when applied to G′r.

Proof. Like for the δC(min-d) heuristic, the algorithm can start with contracting each vertex of the
form vij to x. During this phase, vertices vij have the minimum degree in the graph, namely 3, and
have no common neighbours with x. So, during this phase, the lower bound is set to 3.

After all vertices of the form vij are contracted to x, the graph G′′ has treewidth 3. This can be
seen as follows. The treewidth of a graph is the maximum treewidth of its biconnected components.

4.3 Heuristics 61

The biconnected components of G′′ are either cliques with four vertices, single edges, or consist of x,
a vertex wi, and a number of paths of length 2 between x and wi (for some i, 1 ≤ i ≤ r). In each of
the cases, the treewidth of the component is at most 3. So, after the contractions of the vij-vertices to
x, the bound of 3 cannot be increased. ut

Corollary 62. The δC(least-c) heuristic can give a solution that is a factor of Ω(
√
n) away from

optimal.

It is possible to modify the construction such that any run of the δC(least-c) heuristic gives a
result far from optimal. Instead of cliques with three new vertices and one ‘old’ vertex, we use cliques
with five new vertices and one old vertex. The structure of Figure 4.4 is replaced by the structure of
Figure 4.5. In this way, we obtain a graph that has contraction degeneracy r, but for which any run of
the δC(least-c) heuristic gives a lower bound that is at most 5.

vij wi or wj

Figure 4.5. An alternative structure that replaces edges of the form {vij , wi} or {vij , wj}

4.3.2 δ2C-Heuristics

For computing δ2C, we develop three heuristic algorithms. The first one is called δ2C(all-v), and it is
based on the polynomial time implementation for δ2D. We fix all vertices once at a time and perform
the δC(least-c) heuristic on the rest of the graph. The best second smallest degree recorded provides
a lower bound on δ2C. (We only tested this with the least-c strategy for selecting which neighbour to
contract to, because it seems to be preferable over the other strategies.)

The other two δ2C-heuristics are based on the heuristics for δC. Instead of recording the minimum
degree, we also can record the second smallest degree (maximum second degree with contraction,
abbreviated msd). If we contract a vertex of minimum degree with one of its neighbours (according
to the least-c strategy), we obtain the heuristic δ2C(msd1). If the vertex of second smallest degree is
contracted with one of its neighbours (also according to the least-c strategy), we obtain the heuristic
δ2C(msd2).

4.3.3 γRD-Heuristics

For the parameter γRD, we develop three heuristics based on the following observation: Let v1, ..., vn
be a sorted sequence of the vertices in order of nondecreasing degree in G, and let γR(G) be deter-
mined by vj for some j > 1 (see Lemma 20 and the description of the algorithm to compute γR).
Thus, vj is not adjacent to some vertex vk with k < j, whereas v1, ..., vj−1 induce a clique in G. Let
V ∗ be the set of all vertices vi with i < j and {vi, vj} 6∈ E. Now, for any subgraph G′ ⊂ G with
({vj} ∪ V ∗) ⊆ V (G′), we have that γR(G′) ≤ γR(G). Hence, only subgraphs without either vj or
V ∗ are of further interest. Based on this observation, we implemented three heuristics. In the heuristic
γRD(left), we remove the vertices in V ∗ (the vertices that are more to the left in the sequence) from

62 4 Treewidth Lower Bounds: Algorithms, Heuristics and Experiments

the graph and continue. Whereas in the heuristic γRD(right), we delete the vertex vj (the vertex that
is more to the right in the sequence) and go to the next iteration. The heuristic γRD(min-e) (minimum
number of edges) chooses to remove either V ∗ or vj depending on which of the two deletes fewer
edges to obtain an induced subgraph with as many edges as possible.

4.3.4 γRC-Heuristics

For γRC the same strategies as for γRD have been implemented. The only difference is that instead of
removing all vertices in V ∗ or vj , we contract each of the vertices with a neighbour that is selected ac-
cording to the least-c strategy. (Again, we only use the least-c strategy for selecting a neighbour, since
this strategy appears to perform very well.) Inspired by the good results of the δ2C(all-v) heuristic, we
furthermore implemented the all-v strategy as described above also for the γR-contraction degeneracy.
The difference is that instead of computing δ2 of each obtained minor, we now compute γR.

4.3.5 MCSLB andMCSLBC-Heuristics

Based on the result by Lucena [70] that the visited degree of an MCS ordering of G is a lower
bound for the treewidth (see Theorem 46), we will consider heuristics for computing the parameter
MCSLBC, which is also a treewidth lower bound (see Lemma 49).

For the sake of comparison, we consider a MCSLB-heuristic. This heuristic computes |V |MCS
orderings ψ – one for each vertex as start vertex. It returns the maximum over these orderings of
MCSLBψ. See [14] for more details on the MCSLB treewidth lower bound.

TheMCSLBC heuristic starts by using theMCSLB heuristic to find a start vertexw with largest
MCSLBψ. To reduce the CPU time consumption, an MCS is carried out only with start vertex w (or
vertices resulting from contractions that involve w) instead of with all possible start vertices. Then,
we iteratively select a vertex and a neighbour to contract, compute an MCS ordering and repeat until
the graph has no edges. Three strategies for selecting a vertex v to be contracted are examined:

• min-deg selects a vertex of minimum degree.
• last-mcs selects the last vertex in the just computed MCS ordering.
• max-mcs selects a vertex with maximum visited degree in the just computed MCS ordering.

Once a vertex v is selected, we select a neighbour u of v using the two strategies min-d and least-c
that are already explained for the δC heuristics. We thus have six versions of theMCSLBC heuristic
(e.g. theMCSLBC(max-mcs least-c) heuristic). These are experimentally evaluated in Section 4.4.5.
We do not evaluate the MCSLBC(* max-d) heuristic, because of the negative experimental results
for the δC(max-d) strategy.

4.3.6 LBN and LBP Heuristics

In Section 3.3, we have seen that for each treewidth lower bound algorithm or heuristic Y , we have
two lower bound heuristics LBN(Y) and LBP(Y), based on the technique by Clautiaux et al. [32]. An
example is the LBN(δC(least-c)) heuristic.

A different method to combine the LBN or LBP methods with contraction is to alternate improve-
ment steps with contractions. We describe the LBN+(Y) algorithm for some treewidth lower bound
heuristic Y below. If we instead of making a neighbours improved graph, take a paths improved graph,
we obtain the LBP+(Y) algorithm; the latter one is slower but often gives better bounds.

4.3 Heuristics 63

LBN+(Y)-Algorithm

1 Initialise L to some lower bound on the treewidth of G
(e.g. L := 0)

2 H := G
3 repeat
4 H := the (L+ 1)-neighbours improved graph of H
5 b := Y (H)
6 if b > L
7 then L := L+ 1
8 goto step 2
9 else select a vertex v of minimum degree in H
10 select a neighbour u of v

according to the least-c strategy
11 contract the edge {u, v} in H
12 endif
13 until H is empty
14 output L

In the description above, we used the least-c strategy, as this strategy performed best for the other
heuristics; of course, variants with other contraction strategies can also be considered.

Lemma 63. If Y is an algorithm that outputs a lower bound on the treewidth of its input graph, then
LBN+(Y) and LBP+(Y) output lower bounds on the treewidth of their input graph.

Proof. Let G be the input graph of algorithm LBN+(Y) or LBP+(Y). An invariant of the algorithm is
that the treewidth of G is at least L. A second invariant of the algorithm is that when the treewidth of
G equals L, then the treewidth of H is at most L. Clearly, these invariants hold initially. Lemmas 53
and 54 show that the second invariant holds also after making an improved graph in step 4. The fact
that contraction cannot increase treewidth shows that the second invariant holds after a contraction in
step 11. Similar as in [32], when Y outputs a value larger than L on H , then the treewidth of H and
hence the treewidth of G (by the second invariant) is larger than L, so increasing L by one in step 7
maintains the first invariant. ut

In our experiments, we started the algorithm by setting the lower bound L to the value computed
by the δC(least-c) heuristic.

Faster Implementation of LBP+

A straightforward implementation of an LBP+(Y) heuristic can be very slow. However, we can ob-
serve that some steps are not necessary. Contracting an edge can increase the number of vertex-disjoint
paths between two vertices, but not for all pairs of vertices. Lemma 64 tells us that contracting an edge
{x, y} cannot increase the number of vertex-disjoint paths between u and v, if {x, y} ∩ {u, v} = ∅.

Lemma 64. Let vertices u and v and edge e = {x, y} in G = (V,E) be given. Furthermore, let N
be the maximum number of vertex-disjoint paths between u and v in G, and let N ′ be the maximum
number of vertex-disjoint paths between u and v in G/{x, y}. Then we have:

{x, y} ∩ {u, v} = ∅ =⇒ N ′ ≤ N

64 4 Treewidth Lower Bounds: Algorithms, Heuristics and Experiments

Proof. Let ae be the new vertex created by contracting edge e. We consider a set P ′ of vertex-disjoint
paths p1, ..., pN ′ between u and v inG/e. Since these paths are vertex-disjoint and {x, y}∩{u, v} = ∅,
there can be at most one path p′ in P ′ going through the new vertex ae, i.e. ae is contained in at most
one path p′ of P ′.

One easily sees that there is a path p in G between u and v that uses all vertices of p′ except ae
and x and/or y. Therefore, we have a set P of N ′ vertex-disjoint paths between u and v in G. Hence,
N ′ ≤ N . ut

In other words, the number of vertex-disjoint paths between u and v can be increased by an edge
contraction, only if an edge incident to u or v is contracted. A consequence of this is that after con-
tracting edge ewhich results in a new vertex ae, we only have to look for the number of vertex-disjoint
paths of pairs of vertices that contain ae. This results in a drastic speed up compared to the case when
checking all pairs of vertices for L+ 1 vertex-disjoint paths, as we check O(n) pairs instead of Θ(n2)
pairs. However, once we have found an improvement edge in the graph, we then must check all other
pairs, as possibly, after an improvement edge is added, pairs of vertices that do not contain ae can
have L+ 1 vertex-disjoint paths.

LBN+(δ) versus LBN+(δD)

We now compare the LBN+(δ) heuristic with the LBN+(δD) heuristic, and similarly, the LBP+(δ)
heuristic with the LBP+(δD) heuristic. In the LBN+(δ) heuristic, we just use the minimum degree of
a vertex in H as lower bound, while in the LBN+(δD) heuristic, we use the degeneracy.

The intuitive idea is that LBN+(δ) and LBN+(δD) give the same result, because due to the ad-
ditional contraction step, the subgraphs considered by the δD algorithm, will also be considered in
the LBN+(δ) heuristic; similarly for the version with paths improvement. Below, we show that this
intuition is correct.

Lemma 65. LetG = (V,E) be a graph. Let the results of running the LBN+(δ), LBN+(δD), LBP+(δ)
and LBP+(δD) heuristics on G be αn, βn, αp and βp, respectively. Then αn = βn and αp = βp.

Proof. The proof is the same for the versions with neighbours and paths improvement. Thus, in the
proof below, we write LBX+(δ) and LBX+(δD), where the X can stand for N or P, and we drop the
subscripts n and p from α and β.

First note that when the LBX+(δ) and LBX+(δD) enter the loop at step 3 with the same value of
L, then they will work with the same graph H . Thus, we have that α ≤ β: when LBX+(δ) increases
L by one, we have that L is smaller than the minimum degree of H , hence also smaller than the
degeneracy ofH , and hence the LBX+(δD) algorithm will also increaseL by one at the corresponding
point during the execution of the algorithms. To show equality, we assume the following and derive a
contradiction:

α < β (4.1)

Consider the moments step 2 is done by algorithm LBX+(δD) and by algorithm LBX+(δ) when
L = α. As LBX+(δ) outputs α, this is the last time step 2 is done by the LBX+(δ) algorithm, while
the LBX+(δD) algorithm will increase L further (as α < β), and hence will execute later the ‘goto
step 2’ command at least once.

Let H∗ be the graph H at the moment the LBX+(δD) algorithm is at step 7 and 8 when the
algorithm increases L from α to α+1. This graphH∗ is formed fromG by a sequence of contractions
and (α + 1)-neighbours or (α + 1)-paths improvement steps. As the test in step 6 was true, the
degeneracy of H∗ is at least α+ 1.

4.4 Experiments 65

The LBX+(δ) algorithm has started a run of the main iteration with L = α. As the algorithm
outputs α, this is its last iteration. During this iteration, it does the same improvement steps as the
LBX+(δD) algorithm, and hence, at some point, creates the graph H∗. However, it cannot execute
steps 7 and 8 now, so the test in step 6 was false for the LBX+(δ) algorithms. Thus, we have:

δ(H∗) ≤ α < δD(H∗)

Write d = δD(H∗). Therefore, there exists an induced subgraph H ′ ⊂ H∗ with

δ(H∗) < δ(H ′) = d

Note that all vertices in V (H ′) have degree at least d := δD(H∗) in H∗. We now consider the
execution of LBX+(δ), starting whenH is the graphH∗, up to just before the point that the first vertex
from H ′ is selected as minimum degree vertex v in step 9. During this part of the execution, we have
that H ′ is a subgraph of the graph H used by the algorithm: improvement steps only add edges, and
no edges between vertices in H ′ are contracted.

Now, consider the first vertex v∗ from H ′ that is selected as minimum degree vertex v in step 9
by LBX+(δ). As H ′ is a subgraph of the graph H , we have that the degree of v∗ at the moment it is
selected is at least its degree in H ′, which is at least d. But, as v∗ is the minimum degree of a vertex in
H , all vertices in H have at this point degree at least d. This gives a contradiction. Consider the test
at step 6 just before v∗ was selected: the minimum degree of H is at least d, which is larger than the
current value of L, i.e. α. So, this test is true, and the algorithm will increase L, contradiction.

So, we can conclude that the assumption α < β is false, hence α = β. ut

Whether in practice LBX+(δ) is more time-efficient than LBX+(δD) for a given graph, is unclear
from the above. Computing the lower bound δD is more time-consuming than computing δ, but can
result in a b > L earlier during the contraction process, in this way avoiding a number of graph
improvement steps. By Lemma 65, the number of graph improvement steps in the last iteration will
be equal, slowing down the algorithm on this point.

Similarly LBX+(δC(*)) can be more time-efficient than LBX+(δ): δC(*) is more time-consuming
but can reduce the number of improvement steps. Moreover, LBX+(δC(*)) can return a better bound
than LBX+(δ), although this rarely happens. Experimental results with LBX+(δ), LBX+(δD) and
LBX+(δC(*)) have shown that the computation times of LBX+(δ) are often significantly smaller than
those for LBX+(δD) which in turn are significantly smaller than those for LBX+(δC(*)).

4.4 Experiments

In this section, we report on the results of the computational experiments we have carried out. In the
tables in the subsequent sections, the results are presented for selected instances only. The result of
these representative instances reflect typical behaviour for the whole set of instances. Experimental
results for more graphs can be found in e.g. [17, 18, 93]. In some tables, we give the size of the
graphs, i.e. the number of vertices and the number of edges. The best known upper bound for treewidth
(see [63, 31, 50, 93]) is reported in the column with title UB. Columns headed by LB give treewidth
lower bounds in the terms of the according parameter or a lower bound for the parameter. Values
in columns headed by CPU are running times in seconds. Note that all algorithms and heuristics
for computing the parameters δ, δ2, γR and their D and C variants were implemented using the data
structure explained in Section 4.1. All other heuristics use a tree-based priority queue implementation.
However, before looking at the results, we describe how the experiments were carried out.

66 4 Treewidth Lower Bounds: Algorithms, Heuristics and Experiments

4.4.1 Experimental Setup and Input Graphs

The algorithms and heuristics described in Sections 4.2 and 4.3 have been tested on a large number
of graphs from various application areas. The first set of instances consists of probabilistic networks
from existing decision support systems from fields like medicine and agriculture (see Section 1.1 for
more details on how tree-decompositions of probabilistic networks are used). The second set consists
of instances from frequency assignment problems from the EUCLID CALMA project. In [62, 64],
tree-decompositions were used to solve the frequency assignment problem on many of the networks
from this collection of instances. In addition, we use versions of the networks, obtained by prepro-
cessing [16]. A third set of instances is taken from the work of Cook and Seymour [33]. They present
a heuristic for the travelling salesman problem (TSP) where they use branch-decompositions (a notion
strongly related to tree-decompositions) of graphs formed by merging a number of TSP-tours. Finally,
we computed the lower bounds for many of the DIMACS colouring instances [44].

Many of the tested graphs as well as most of their experimental results on treewidth can be obtained
from [93]. As mentioned above, we only give the results for a selection of twelve graphs. These
graphs were selected in a way such that at least one graph of every set of instances belongs to the
selection. Furthermore, we tried to select graphs with interesting behaviour in order to show that some
algorithms or heuristics do or do not work well on some instances.

All algorithms and heuristics were been written in C++, and the computations were carried out on
a PC with a 3.2 GHz Intel Pentium 4 HT processor with 2 GB main memory operating under Linux.

4.4.2 Results for δ, δ2, γR, δD, δ2D and γRD

Table 4.2 shows the sizes of the graphs, treewidth upper bounds and the results obtained from the
treewidth lower bound algorithms without edge-contraction. These bounds are the exact parameters
apart from the values for the three γRD heuristics. As the computation times for δ, δ2 and γR are
negligible, we omit them in the table. Also the δD can be computed within a fraction of a second. The
computational complexity of δ2D is a factor of O(n) larger than the one of δD which is reflected in
the CPU times for this parameter.

instance size UB δ δ2 γR δD δ2D γRD
left right min-e

|V | |E| LB LB LB LB CPU LB CPU LB CPU LB CPU LB CPU
link 724 1738 13 0 0 0 4 0.01 4 3.67 4 0.01 4 0.01 4 0.01
munin1 189 366 11 1 1 1 4 0.00 4 0.23 4 0.00 4 0.00 4 0.00
munin3 1044 1745 7 1 1 1 3 0.01 3 6.70 3 0.02 3 0.01 4 0.01
pignet2 3032 7264 135 2 2 2 4 0.04 4 69.87 4 0.04 4 0.05 4 0.04
celar06 100 350 11 1 1 1 10 0.01 11 0.08 11 0.00 10 0.00 10 0.00
celar07pp 162 764 16 3 3 3 11 0.01 12 0.27 12 0.00 11 0.01 11 0.00
graph04 200 734 51 3 3 3 6 0.01 6 0.36 6 0.00 6 0.00 6 0.01
queen15-15 225 5180 163 42 42 42 42 0.01 42 0.87 42 0.00 42 0.01 42 0.01
school1 385 19095 188 1 1 1 73 0.04 74 7.89 75 0.03 73 0.03 73 0.03
school1-nsh 352 14612 162 1 1 1 61 0.02 62 5.69 62 0.03 61 0.02 61 0.03
zeroin.i.1 126 4100 50 28 29 32 48 0.00 48 0.58 50 0.01 50 0.01 50 0.01
rl5934-pp 904 1800 21 3 3 3 3 0.01 3 5.33 3 0.01 3 0.01 3 0.01

Table 4.2. Graph sizes, treewidth upper bounds, treewidth lower bounds and running times of the algorithms and heuristics
without edge-contraction

4.4 Experiments 67

The results of the algorithms and heuristics without edge-contractions (Table 4.2) show that the
degeneracy lower bounds (i.e. the lower bounds involving subgraphs) are significantly better than the
simple lower bounds, as could be expected. Comparing the results for δD and δ2D, we see that in four
cases we have that δ2D = δD+ 1. In the other seven cases δ2D = δD. Bigger gaps than one between
δD and δ2D are not possible (see Lemma 19). In some cases other small improvements (compared to
δD and δ2D) could be obtained by the heuristics for γRD. The three γRD-heuristics are all compa-
rable in value and running times. Apart from the running times for computing δ2D, the computation
times are in all cases marginal, which is desirable for methods involving computing lower bounds
many times (e.g. branch-and-bound). Even though the δ2D algorithm has much higher running times
than the other algorithms in Table 4.2, it is still much faster than some heuristics with contraction.
Furthermore, we expect that its running time could be improved by a more efficient implementation.
We do not further investigate these parameters without contraction, as the parameters with contraction
are of considerably more interest.

4.4.3 Results for δC

In Table 4.3, we again include the best known upper bounds for the sake of comparison. Furthermore,
for an easy comparison between the δD algorithm and the different δC heuristics, we also present the
results of the δD algorithm.

instance size UB δD δC
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU
link 724 1738 13 4 0.00 8 0.01 5 0.01 11 0.03
munin1 189 366 11 4 0.00 8 0.00 5 0.01 10 0.00
munin3 1044 1745 7 3 0.01 6 0.01 4 0.01 7 0.02
pignet2 3032 7264 135 4 0.01 28 0.10 10 0.07 38 0.10
celar06 100 350 11 10 0.00 11 0.00 10 0.01 11 0.00
celar07pp 162 764 16 11 0.00 13 0.00 12 0.00 15 0.01
graph04 200 734 51 6 0.01 12 0.01 7 0.00 20 0.01
queen15-15 225 5180 163 42 0.01 52 0.06 42 0.02 58 0.10
school1 385 19095 188 73 0.02 98 0.19 74 0.09 122 0.47
school1-nsh 352 14612 162 61 0.01 81 0.13 61 0.06 106 0.33
zeroin.i.1 126 4100 50 48 0.01 50 0.02 48 0.01 50 0.03
rl5934-pp 904 1800 21 3 0.00 5 0.02 4 0.01 5 0.02

Table 4.3. Graph sizes, upper bounds and results of the δD algorithm and the δC heuristics

We can see from these results that edge-contraction is a very powerful method for obtaining lower
bounds for treewidth. The improvements obtained by using the δC heuristics instead of the δD algo-
rithm are in many cases quite significant, and they show the impressive impact of combining edge-
contraction with treewidth lower bounds.

Concerning the different strategies for δC, we can observe that the least-c strategy is best. In many
cases, it performs much better than the other two strategies, and in all our experiments, there are only
very rare cases where its bound is not the best amongst the three strategies for computing δC. The
max-d strategy appears to do bad, giving in general much smaller lower bounds than the other two.
Thus, we did not use this strategy as a part or subroutine for other heuristics.

68 4 Treewidth Lower Bounds: Algorithms, Heuristics and Experiments

4.4.4 Results for δ2C and γRC

Table 4.4 shows the results of the δ2C and γRC heuristics. Furthermore, we give the results of the
δC(least-c) heuristic for easy comparison.

instance δC δ2C γRC
least-c all-v MSD+1 MSD+2 left right min-e all-v

LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU
link 11 0.03 11 13.37 11 0.02 11 0.02 11 0.02 12 0.02 11 0.02 11 106.26
munin1 10 0.00 10 0.51 10 0.00 10 0.01 9 0.00 10 0.00 10 0.00 10 2.43
munin3 7 0.02 7 11.52 7 0.01 7 0.01 7 0.01 7 0.01 7 0.02 7 294.07
pignet2 38 0.10 40 300.05 39 0.11 39 0.13 38 0.11 39 0.11 39 0.11 40 7962.11
celar06 11 0.00 11 0.15 11 0.00 11 0.00 11 0.00 11 0.00 11 0.00 11 0.46
celar07pp 15 0.01 15 0.63 15 0.01 15 0.00 15 0.01 15 0.00 15 0.00 15 1.86
graph04 20 0.01 21 2.20 20 0.01 19 0.01 20 0.02 19 0.01 20 0.01 21 4.52
queens15-15 58 0.10 59 22.89 58 0.11 59 0.10 59 0.10 60 0.09 59 0.09 60 28.36
school1 122 0.47 124 181.73 123 0.48 122 0.47 122 0.46 122 0.52 122 0.45 125 214.83
school1-nsh 106 0.33 108 110.34 106 0.34 107 0.33 104 0.33 106 0.33 106 0.30 108 130.71
zeroin.i.1 50 0.03 50 4.14 50 0.03 50 0.04 50 0.02 50 0.03 50 0.04 50 5.68
rl5934-pp 5 0.02 6 20.25 5 0.02 5 0.02 5 0.03 6 0.03 5 0.02 6 230.49

Table 4.4. Treewidth lower bounds with contraction obtained by the δ2C and γRC heuristics

The results show that values for δ2C are typically equal or only marginal better than the value for
δC. The same is true for γRC with respect to δ2C. The best results are obtained by the most time-
consuming algorithms: δ2C(all-v) and γRC(all-v). By construction of the heuristic for γRC(all-v), it
is clear that it is at least as good as the heuristic for δ2C(all-v) strategy. Sometimes, it is even a little
bit better. As in the case of the δ2D algorithm, the computation times of the δ2C(all-v) and γRC(all-v)
heuristics could probably be improved by more efficient implementations. The other strategies for δ2C
and γRC are comparable in value and running times. No clear trend between them can be identified. In
a few cases, we can observe that the gap between the heuristically obtained values for δC and δ2C is
more than one. This does not contradict Lemma 19, because the given values are not the exact values
of δC and δ2C, but lower bounds on them. Different strategies for heuristics can result in different
values with larger gaps between them. With the same argument, we can explain that in a few cases
lower bounds of one parameter that in theory is larger than another parameter, can be smaller than
lower bounds of the other parameter.

4.4.5 Results forMCSLB andMCSLBC

The results of the experiments with the MCSLB and MCSLBC heuristics in Table 4.5 show again
the high potential of combining edge-contractions with treewidth lower bounds.

For the MCSLBC heuristics, again the least-c strategy for selecting a neighbour seems to be
better than the min-d strategy. We observe that min-deg and last-mcs for selecting the contraction ver-
tex, combined with least-c outperform the other strategies. The differences between δC(least-c) and
MCSLBC(least-c) are usually small, but in a few cases, the MCSLBC(least-c) gives a significant
larger bound. The running times of these heuristics are often much larger compared to the δC heuris-
tics. However, we can often observe that there is no large difference between the running times of the
MCSLBC heuristics.

4.4 Experiments 69

instance MCSLB MCSLBC LBs
min-deg last-mcs max-mcs

min-d least-c min-d least-c min-d least-c
LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

link 5 3.26 8 51.51 10 52.19 8 50.52 11 51.58 8 17.62 6 18.25
munin1 4 0.17 8 0.88 10 0.88 9 0.84 10 0.86 9 0.82 7 0.86
munin3 4 6.42 6 30.49 7 30.57 7 30.79 7 30.91 6 29.20 7 29.45
pignet2 5 61.60 28 443.59 39 461.07 30 450.02 39 455.30 16 419.95 18 449.78
celar06 11 0.06 11 0.35 11 0.35 11 0.29 11 0.30 11 0.26 11 0.27
celar07pp 12 0.17 14 1.33 15 1.36 13 1.06 15 1.09 13 0.94 15 0.93
graph04 8 0.26 12 1.51 20 1.78 13 1.49 20 1.78 14 1.50 16 1.73
queen15-15 42 0.91 52 13.15 59 13.87 52 12.89 62 13.91 52 13.31 58 14.15
school1 85 5.40 97 131.78 122 138.15 110 134.59 118 137.64 104 106.86 118 112.78
school1-nsh 72 3.45 81 83.10 108 88.16 92 84.25 101 89.52 88 66.54 105 72.01
zeroin.i.1 50 0.39 50 4.64 50 4.79 50 4.59 50 4.89 50 4.28 50 4.62
rl5934-pp 4 5.38 5 26.69 6 26.91 5 25.11 6 26.66 5 26.02 6 26.43

Table 4.5. Results of MCSLB+ for selected instances

4.4.6 Results for the LBN and LBP Heuristics

Table 4.6 presents the results of some heuristics with graph improvement. We consider the heuristics
LBN(δD), LBN(δC(least-c)), LBN+(δ) and LBN+(δD). We also look at the variants of these four
heuristics where we use the path-improved graph instead of the neighbour-improved graph. For more
details on these heuristics, see Sections 3.3 and 4.3.6. All the heuristics considered here use as the
initial value the lower bound obtained by the δC(least-c) heuristic (see Table 4.3).

instance LBN LBN LBN+ LBN+ LBP LBP LBP+ LBP+
(δD) (δC(least-c)) (δ) (δD) (δD) (δC(least-c)) (δ) (δD)

LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU
link 11 0.01 11 0.03 11 0.19 11 1.92 11 6.25 11 6.48 12 38.85 12 41.68
munin1 10 0.01 10 0.00 10 0.02 10 0.13 10 0.10 10 0.10 10 0.17 10 0.26
munin3 7 0.01 7 0.02 7 0.24 7 3.21 7 12.41 7 12.82 7 27.66 7 28.40
pignet2 38 0.04 38 0.15 41 8.53 41 144.29 38 52.89 40 106.62 48 701.78 48 1011.68
celar06 11 0.00 11 0.01 11 0.01 11 0.05 11 0.09 11 0.09 11 0.12 11 0.15
celar07pp 15 0.00 15 0.01 15 0.03 15 0.15 15 0.82 15 0.85 16 1.95 16 2.43
graph04 20 0.01 20 0.01 21 0.11 21 0.45 20 0.01 20 0.02 24 2.89 24 2.69
queen15-15 58 0.01 58 0.12 60 3.52 60 5.08 58 0.01 58 0.12 73 4125.61 73 1571.34
school1 122 0.24 122 0.71 132 78.20 132 107.57 122 1627.78 128 2419.98 149 135748.37 149 92871.70
school1-nsh 106 0.08 106 0.41 116 52.06 116 74.07 106 741.33 111 1024.36 132 74905.93 132 58722.77
zeroin.i.1 50 0.02 50 0.04 50 0.34 50 0.57 50 23.08 50 24.95 50 23.38 50 23.99
rl5934-pp 5 0.00 5 0.03 5 0.20 5 2.76 6 5.18 6 5.41 9 12944.76 9 21.24

Table 4.6. Treewidth lower bounds obtained with the LBN/LBP and LBN+/LBP+ heuristics

As expected, the heuristics based on graph improvements can indeed improve treewidth lower
bounds. However, as we observe, we do not obtain improvements with the LBN(δD) and the
LBN(δC(least-c)) heuristics compared to the δC(least-c) heuristic for the selected graphs. Hence,
neighbour-improvement is not a strong enough concept to improve on the lower bounds given by the
δC(least-c) heuristic. The situation is similar for the LBP(δD) heuristic. The running times are often
small, which can be explained by the fact that only one round of improvement happened.

70 4 Treewidth Lower Bounds: Algorithms, Heuristics and Experiments

The LBP(δC(least-c)) heuristic gives now and then small improvements. Whether this heuristic is
preferable over an MCSLBC heuristic depends on the input graph. The lower bound values usually
do not differ much. Often the LBP(δC(least-c)) heuristic is faster, except for rather dense graphs.

The LBP+(δ) and LBP+(δD) heuristic can give considerable improvements to the lower bounds
and as stated by Lemma 65, they are equal. But they appear to use very much time on some in-
stances. A few cases could not be run to completion due to the large amount of time used; others
give a result only after several many hours of computation time. Hence, if the lower bound has to
be computed frequently, e.g. within a branch-and-bound algorithm, it is advisable to first compute a
lower bound that can be computed quickly (e.g. δC(least-c)), and only in tight cases use a slower but
hopefully better lower bound. While often no clear trend among the running times of the LBP+(δ) and
LBP+(δD) heuristics can be observed, the situation for the TSP-instance rl5934-pp is remarkable.
Here the LBP+(δ) heuristic finishes after nearly 13000 seconds, and the LBP+(δD) heuristic only
needs a bit more than 21 seconds. A possible explanation for this is that δD delivers a better lower
bound much earlier than δ, which results in an earlier increase of the lower bound computed by the
LBP+ heuristic. Especially the path-improvements are very time-consuming. An earlier increase of the
lower bound therefore means that much less improvements and contraction iterations are performed
during the run of the LBP+(δD) heuristic.

4.5 Concluding Remarks

In our experiments, we could observe impressive improvements when comparing the simple param-
eters with their degeneracy counterparts. An even bigger improvement was achieved when edge-
contractions (i.e. taking of minors) were used. Therefore, the experiments show that contracting edges
is a very good approach for obtaining lower bounds for treewidth, as it considerably improves known
lower bounds.

The δC heuristics appear to be attractive, due to the fact that the running time of these heuristics
is almost always negligible, and the bound is reasonably good. The added value of δ2C and γRC
in comparison to δC is from a practical perspective marginal. The MCSLBC heuristics have much
larger running time, and often give only a small improvement on the δC based lower bound. The
LBN, LBP, LBN+ and LBP+ heuristics often use more time than the δC heuristics, but less than the
MCSLBC heuristics (except for LBP+(δ)), and can give further lower bound improvements. The
LBP+(δ) heuristic usually is slowest but gives often the best results.

Furthermore, we see that the strategy (least-c) for selecting a neighbour u of v with the least
number of common neighbours of u and v often performs best and appears to be the clear choice for
such a strategy.

Notice that although the gap between lower and upper bound could be significantly closed by
contracting edges within the algorithms, the absolute gap is still large for many graphs (pignet2,
graph...). However, there are also a lot of graphs with small gaps between lower and upper bound. For
some graphs, it is even the case that the lower bound equals the upper bound, and hence, the treewidth
is known now (see e.g. [18]).

While it is known that the treewidth has polynomial-time approximation algorithms with logarith-
mic performance ratios [13], the existence of polynomial-time approximation algorithms for treewidth
with constant bounded ratios remains a long-standing open problem. Thus, obtaining good lower
bounds for treewidth is both from a theoretical and from a practical viewpoint a highly interesting
topic for further research.

4.5 Concluding Remarks 71

As mentioned earlier, using γR instead of δ2 in the degeneracy and contraction degeneracy heuris-
tics, gives only small improvements in some cases. Therefore, the ratio of 2 between those parameters
as stated in Lemma 21 is far from the ratios observed in our experiments.

It remains an interesting topic to research other treewidth lower bounds that can be combined
with edge-contraction or minor-taking, in the hope to obtain large improvements. Furthermore, good
lower bounds for graphs with bounded genus are desirable, because lower bounds based on δ, δ2 or
γR do not perform very well on such graphs (see Section 3.1.6). Treewidth lower bounds for planar
graphs (i.e. graphs with genus zero) can be obtained e.g. by computing the branchwidth of the graph
(see [55, 88]).

5

Contraction Degeneracy on Cographs

Contracting edges was shown to be of great use for obtaining new lower bound heuristics for treewidth
(see Chapter 4). The new parameter contraction degeneracy arose from this research. The correspond-
ing decision problem is NP -complete (see Section 3.1.3). See Section 3.1 for more details on this
parameter. Because of its elementary formulation, research on this parameter is an fascinating topic
in its own right and not only as a treewidth lower bound. Therefore, it is interesting to look for special
graph classes where the contraction degeneracy can be computed in polynomial time. So far, little is
known about this. In Section 3.1.5, we have seen that computing the contraction degeneracy of chordal
graphs is trivial.

In this chapter, we consider the contraction degeneracy problem for the class of cographs.
Cographs are graphs with a special structure. They are perfect and form a proper subset of the permu-
tation graphs. Cographs can be defined recursively using two operations (disjoint union and comple-
ment, see Section 5.1) on singletons, and hence, every cograph can be represented by a tree, called its
cotree. In Section 5.2, we present a polynomial time algorithm for computing the contraction degen-
eracy of a cograph, using a dynamic-programming approach on the cotree of a cograph. It should be
noted that the contraction degeneracy of a cograph is not needed as a treewidth lower bound as the
treewidth of a cograph is polynomial time computable [19]. This chapter is based on a cooperation
with Hans L. Bodlaender [20].

5.1 Cographs

There are several independently discovered, but equivalent, definitions of cographs. As mentioned
before, cographs (also called complement reducible graphs) can be defined recursively as follows: a
single vertex is a cograph; given two cographs G1 and G2, the disjoint union G = G1 ∪ G2 is a
cograph; and if G is cograph, then the complement Ḡ of G is also a cograph. Another characterisation
of cographs is that cographs are exactly those graphs that do not contain a P4 (a path on four vertices)
as an induced subgraph [69].

In the following, we will give an alternative, equivalent definition of cographs which requires the
two operations ‘disjoint union’ and ‘product’.

Definition 66. Let two graphs G1 = (V1, E1) and G2 = (V2, E2) be given, with V1 ∩ V2 = ∅.
• The disjoint union of G1 and G2 is

G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).
• The product of G1 and G2 is

G1 ×G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {{v1, v2} : v1 ∈ V1 ∧ v2 ∈ V2}).

74 5 Contraction Degeneracy on Cographs

Note that the operations ∪ and × are commutative and associative. Hence, the result of a sequence of
equal operations is well-defined.

Definition 67. A graph G is a cograph if, and only if one of the following holds:

• |V | = 1
• G = G1 ∪G2 ∪ ... ∪Gp for cographs G1, ..., Gp.
• G = G1 ×G2 × ...×Gp for cographs G1, ..., Gp.

A consequence from this recursive definition is that a cograph can be represented as an expression
using the operations ∪ and × on singletons. Such an expression can be represented by a tree from
which we can derive a tree-representation, the cotree of the cograph [69, 37]. Very often, a dynamic-
programming approach can be applied to such a cotree, enabling efficient algorithms on cographs for
problems that are NP -hard on general graphs.

The cotree TG (or simply T) of G is a labelled tree. Leaves of the cotree are in a one-to-one
correspondence with the vertices of the cograph. Internal nodes of the cotree are labelled with either
‘0’ or ‘1’. To each node of the cotree, we can associate a cograph in the following way: Each leaf of
the cotree represents a graph with a single vertex, hence a cograph. A 0-node represents a cograph
that is the disjoint union of the cographs corresponding to the children of the 0-node, and a 1-node
represents a cograph that is the product of the cographs corresponding to the children of that 1-node.
Here, we see the advantage of using the operations ‘disjoint union’ and ‘product’ for the definition
of a cograph: namely the strong correlation between the recursive definition of the graph and the
structure of the cotree. Note that there is an edge between two vertices v and w if and only if the
lowest common ancestor of v and w in the cotree is a 1-node. There are linear time algorithms for
recognising cographs and building the cotree [38, 27].

In Definition 67, we can restrict p to be 2. Consequently, the cotree can be taken as a binary tree,
which is very helpful for formulating dynamic-programming algorithms. The size of such a binary
cotree TG of cographG is linear in the size ofG, because TG has exactly n = |V (G)| leaves, and after
at most O(n) nonempty disjoint union or product operations, we obtain the graph G. Therefore, we
have at mostO(n) internal nodes in TG. In the following, we always assume that the cotree is a binary
cotree, i.e. ‘cotree’ refers to ‘binary cotree’. Clearly, the contraction degeneracy of a disconnected
graph is the maximum contraction degeneracy of its connected components. Thus, we may assume
w.l.o.g. that the given cograph is connected, and hence, the root of the cotree is a 1-node.

5.2 Computing Contraction Degeneracy

In this section, we present a dynamic-programming method for computing the contraction degeneracy
of a cograph G. We assume that G is given with a binary cotree T (otherwise, a cotree can be build in
linear time [38, 27], from which a binary cotree can be easily constructed). The special structure of a
binary cotree makes it easier to present a dynamic-programming algorithm. As already described ear-
lier, cotrees have two kind of internal nodes: 1-nodes and 0-nodes. Every node i represents a subgraph
Gi of the input graph G. Each internal node i of a binary cotree has exactly two children j1 and j2.
When considering a 0-node i of a cotree, the graph Gi is simply the disjoint union of the two graphs
Gj1 and Gj2 . Consequently, all edges that can be contracted in Gi can either be contracted in Gj1 or
in Gj2 . However, if i is an 1-node, new edges are created between vertices of Gj1 and vertices of Gj2 .
Hence, not all edges that can be contracted in Gi can be contracted in Gj1 or in Gj2 . Consider some
fixed internal node i of T with children j1 and j2. We use the following terminology:

5.2 Computing Contraction Degeneracy 75

• Gi is the graph corresponding to node i, i.e. Gi = Gj1 ∪Gj2 if i is a 0-node, and Gi = Gj1 ×Gj2
if i is a 1-node.

• Vi = V (Gi), Vj1 = V (Gj1), Vj2 = V (Gj2).
• Ei = E(Gi), Ej1 = E(Gj1), Ej2 = E(Gj2).
• ni = |Vi|.
• e ∈ Ei is called a cross edge if i is a 1-node and e 6∈ Ej1 ∪ Ej2 .
• G \ V ′ = G[V \ V ′] for a graph G = (V,E) and V ′ ⊆ V .

The following lemma is easy to see, but it is an important part of the correctness proof of our approach.

Lemma 68. Contracting a cross edge of Gi creates a universal vertex in Gi.

Proof. Given a cross edge e = {u, v}, u ∈ Vj1 and v ∈ Vj2 , we know by definition of a 1-node, that
u is adjacent to all w ∈ Vj2 in Gi. Also, v is adjacent to all w ∈ Vj1 in Gi. When contracting e, we
get a vertex, adjacent to all w ∈ Vi \ e in Gi. ut

In our dynamic-programming approach, we associate to each node i, i.e. to each subgraph Gi, a
function

Fi : N× N −→ N

For nonnegative integers x and y with x + y ≤ ni, x ≤ ni − 1, the function Fi is defined in the
following way:

Fi(x, y) = max{δ(H) | H can be obtained from Gi by

contracting the edges of a contraction-set of size x

and then deleting y vertices and their incident edges}

A table Ti with O(n2
i) entries can be used to store the values of Fi. The table contains a tuple for

every possible x-y-combination. Each tuple consists of three integers (x, y, z), with z = Fi(x, y).
The motivation behind storing the maximum minimum degree after x edge contractions and y ver-

tex deletions is as follows. When considering a graph Gi, we can contract edges in E(Gi) to increase
the minimum degree. We also must consider the possibility that in order to obtain the maximum min-
imum degree of G, i.e. to solve the contraction degeneracy problem on G, it might be necessary to
contract some edges not in E(Gi) but in E(Gh) where h is a 1-node in the cotree that is on the path
from i to the root r of the cotree. Deleting a vertex can decrease the minimum degree. However, we
do not delete vertices from the graph Gi, we only ‘deactivate’ them, such that they have no influence
on the degrees at this moment. In a later stage, deactivated vertices might be used for contracting cross
edges, which results in universal vertices (see Lemma 68). The consequences of the introduction of a
universal vertex are easily computable, since the degree of each vertex is increased by one. This is the
reason why we first ‘deactivate’ some vertices and later use them again (not explicitely). In the next
lemma, we see that we indeed can compute the contraction degeneracy of a cograph by using function
Fi.

Lemma 69. Given the function Fi defined above for node i of a binary cotree, we can solve the
contraction degeneracy problem for Gi in O(ni) time.

Proof. To solve the problem on Gi means that we can only use contractions of edges in Gi to increase
the minimum degree, and we must not delete any vertices. For every number x of contracted edges
in Gi, and every number y of deleted vertices, we have the maximum minimum degree. For the
contraction degeneracy problem, we only need these values with y = 0. Clearly, we have:

76 5 Contraction Degeneracy on Cographs

δC(Gi) = max
x=0,...,ni−1

Fi(x, 0)

ut

Hence, if we have the function Fr for the root r of the cotree, i.e. Gr = G, we can compute the
contraction degeneracy of G in O(n) additional time. Now we have seen that the functions Fi are
sufficient to solve the problem, we look at how to compute these for each node i, using the functions
for the children of i. As giving such a function for a leaf node i is trivial (there are just two values
Fi(0, 0) = 0 and Fi(0, 1) = ∞), we describe the methods to compute the values of these functions
for 0-nodes and for 1-nodes recursively.

5.2.1 A Recurrence Relations for 0-nodes

In this section, we give the recurrence relation for a 0-node i with children j1 and j2, i.e. we present
and prove the correctness of a recursive formula to compute Fi using the already computed values of
functions Fj1 and Fj2 .

Lemma 70. Let i be a 0-node with children j1 and j2, x and y nonnegative integers with x+ y ≤ ni,
x ≤ ni − 1. Then we have:

Fi(x, y) = max { min(Fj1(x1, y1), Fj2(x2, y2)) |
x1, x2, y1, y2 ∈ N ∧ x1 + x2 = x ∧ y1 + y2 = y ∧
x1 ≤ nj1 − 1 ∧ x2 ≤ nj2 − 1 }

Proof. Let x and y be fixed nonnegative integers with x + y ≤ ni, x ≤ ni − 1. First, we will prove
that Fi(x, y) is at least the stated expression.

Claim. Let x1, y1, x2, and y2 be fixed integers with x1 + x2 = x, y1 + y2 = y, x1 ≤ nj1 − 1 and
x2 ≤ nj2 − 1. Then Fi(x, y) ≥ min(Fj1(x1, y1), Fj2(x2, y2)).

Proof. Let E1 be the contraction-set with |E1| = x1, and let V1 be the vertex set with |V1| = y1, such
that Fj1(x1, y1) = δ((Gj1/E1) \ V1). E2 and V2 are defined similarly.

Now we can contract inGi the contraction-setE1∪E2, and then delete all vertices in V1∪V2. Since
Fi(x, y) is defined to be a maximum value, and (Gi/(E1∪E2))\(V1∪V2) is a possible minor (see the
definition of Fi), we have: Fi(x, y) ≥ δ((Gi/(E1∪E2))\(V1∪V2)) = min(Fj1(x1, y1), Fj2(x2, y2)).
�

As the claim holds for all nonnegative integers x1, y1, x2 and y2 with x1 + x2 = x, y1 + y2 = y,
x1 ≤ nj1 − 1 and x2 ≤ nj2 − 1, we have:

Fi(x, y) ≥ max { min(Fj1(x1, y1), Fj2(x2, y2)) |
x1, x2, y1, y2 ∈ N ∧ x1 + x2 = x ∧ y1 + y2 = y

x1 ≤ nj1 − 1 ∧ x2 ≤ nj2 − 1 }

Now we show that Fi(x, y) is at most the stated expression. Consider a contraction-set E ′ ⊆ E
with |E′| = x, and a vertex set V ′ ⊆ V with |V ′| = y, such that

Fi(x, y) = δ((Gi/E
′) \ V ′)

Note that i is a 0-node, and hence, each edge inEi belongs toEj1 orEj2 .E′ and V ′ can be partitioned
in the following way:

5.2 Computing Contraction Degeneracy 77

E1 := Ej1 ∩ E′ E2 := Ej2 ∩ E′ V1 := Vj1 ∩ V ′ V2 := Vj2 ∩ V ′
x1 := |E1| x2 := |E2| y1 := |V1| y2 := |V2|

Claim. It holds that: x1 + x2 = x, y1 + y2 = y, x1 ≤ nj1 − 1 and x2 ≤ nj2 − 1.

Proof. From the partition of E ′ and V ′, it directly follows that x1 + x2 = x and y1 + y2 = y. Each
contraction-set is a forest, and hence, each contraction-set has at most n − 1 edges, where n is the
number of vertices in the considered graph. E1 is a contraction-set, since E1 ⊆ E′. Therefore, E1 is
a contraction-set for Gj1 . Thus, x1 ≤ nj1 − 1 and x2 ≤ nj2 − 1. �

We have Gi = Gj1 ∪ Gj2 and by definition of E1, E2, V1 and V2, the following is easy to see.
(Gi/E

′) \ V ′ = (Gj1/E1) \ V1 ∪ (Gj2/E2) \ V2, and therefore, we have:

Fi(x, y) = δ((Gi/E
′) \ V ′) = min(δ((Gj1/E1) \ V1), δ((Gj2/E2) \ V2))

So, Fi(x, y) ≤ δ((Gj1/E1) \ V1) ≤ Fj1(x1, y1). Similarly, Fi(x, y) ≤ Fj2(x2, y2), and hence,
Fi(x, y) ≤ min(Fj1(x1, y1), Fj2(x2, y2)). ut

5.2.2 A Recurrence Relations for 1-nodes

This section is devoted to the recurrence relation forFi for a 1-node iwith children j1 and j2. However,
before we present and prove the correctness of the recursive formula to compute Fi (using the already
computed values of functions Fj1 and Fj2), we introduce a modified version F ′i of Fi. The function
F ′i is defined especially for 1-nodes. The advantage is that it is easier and faster to compute. Later,
we will show that we can compute Fi using function F ′i . Let i be a 1-node with associated graph
Gi = (Vi, Ei), and let Ec ⊆ Ei be the set of cross edges of Gi. For nonnegative integers x and y with
x+ y ≤ ni and x ≤ ni − 1, the function F ′i : N× N −→ N is defined in the following way:

F ′i (x, y) = max{δ(H) | H can be obtained from Gi by

contracting the edges of a contraction-set E ′ of size x

and then deleting y vertices and their incident edges,

where for all e, f ∈ Ec ∩ E′ : e ∩ f = ∅ }

The last requirement in the definition of F ′i says that all cross edges inE ′ are pairwise disjoint, i.e. any
two edges inE′ have no endpoint in common. Hence, every cross edge inE ′ creates a unique universal
vertex. We first give a number of lemmas which will be used later. For Lemmas 71, 72 and 73, suppose
the following is given. The graph Gi = Gj1 ×Gj2 is the product of Gj1 and Gj2 . Furthermore, let us
be given contraction-sets E ′ ⊆ Ei, |E′| = x, E1 ⊆ Ej1 and E2 ⊆ Ej2 , vertex sets V ′ ⊆ Vi, |V ′| = y,
V1 ⊆ Vj1 , V2 ⊆ Vj2 , withE1 = E′∩Ej1 , |E1| = x1,E2 = E′∩Ej2 , |E2| = x2,E∗ = E′\(E1∪E2),
|E∗| = x∗, and E∗ only contains pairwise disjoint edges, i.e. ∀e, f ∈ E∗ : e ∩ f = ∅. Furthermore,
let V ∗ =

⋃
e∈E∗ e, V1 = Vj1 ∩ (V ′ ∪ V ∗), |V1| = y1, V2 = Vj2 ∩ (V ′ ∪ V ∗), |V2| = y2 and y1 ≥ x∗,

y2 ≥ x∗. Note that E∗ is the set of cross edges that are contracted, and V ∗ is the set of endpoints of
edges in E∗.

Lemma 71. Each of the following holds:

1. |V (Gi/E
′ \ V ′)| = ni − x− y.

2. x+ y = ni =⇒ Fi(x, y) =∞.
3. x+ y < ni =⇒ Fi(x, y) < ni − x− y.

78 5 Contraction Degeneracy on Cographs

Proof. (1.) Note that Gi has ni vertices. Since E ′ is a contraction-set, every contraction of an edge
in E′ results in a decrease of the number of vertices by one. Hence, |V (Gi/E

′)| = ni − x. Now, we
have to delete y vertices in Gi/E′. Clearly, |V (Gi/E

′ \ V ′)| = ni − x− y.
(2.) From (1.), we can conclude thatGi/E′ \V ′ is the null graph (the empty graph with 0 vertices).

Hence, the minimum degree of a vertex over an empty vertex set is the minimum of an empty set of
integers, i.e. it is∞.

(3.) Since Gi/E′ \ V ′ has ni − x − y vertices, the maximum degree of a vertex in Gi/E
′ \ V ′

is at most ni − x − y − 1. As this holds for every E ′ and V ′ with |E′| = x, |V ′| = y, we have
Fi(x, y) ≤ ni − x− y − 1. ut

Note that we explicitly excluded the null graph as a minor and as a subgraph of a graph. However,
we will use the minimum degree of the null graph in our recurrence relations, i.e. we need statement
(2.) of Lemma 71.

Lemma 72. Let v1 ∈ V (Gj1/E1 \ V1). Then we have:

dGi/E′\V ′(v1) = dGj1/E1\V1
(v1) + nj2 − x2 − y2 + x∗

Proof. Since E1 and V1 only change the internal structure and the number of vertices in Gj1 , we
have: d(Gj1×Gj2)/E1\V1

(v1) = dGj1/E1\V1
(v1) + nj2 . With the same argument that E2 and V2 only

affect Gj2 , we have: d(Gj1×Gj2)/(E1∪E2)\(V1∪V2)(v1) = dGj1/E1\V1
(v1) + nj2 − x2 − y2 (see (1.) in

Lemma 71). However, instead of deleting all vertices in V1 ∪ V2, we contract x∗ disjoint edges with
one endpoint in V1 and the other endpoint in V2, i.e. we contract all cross edges in E∗. It is easy to see
that this results in x∗ additional universal vertices (see Lemma 68). Hence, we have:

d(Gj1×Gj2)/(E1∪E2∪E∗)\[(V1∪V2)\V ∗](v1) = dGj1/E1\V1
(v1) + nj2 − x2 − y2 + x∗

ut

Lemma 73. Let v1, v2 ∈ V (Gj1/E1 \ V1). Then we have:

dGj1/E1\V1
(v1) ≤ dGj1/E1\V1

(v2)⇐⇒ dGi/E′\V ′(v1) ≤ dGi/E′\V ′(v2)

Proof. This follows directly from Lemma 72. ut

Lemma 74. If x+ y = ni, then F ′i (x, y) =∞.

Proof. This is similar to Lemma 71(2). ut

Now in Lemmas 75 and 76, we give the recurrence relation for 1-nodes.

Lemma 75. Let i be a 1-node with children j1 and j2. Let x and y be nonnegative integers with
x+ y ≤ ni, x ≤ ni − 1. Then, we have:

F ′i (x, y) = max{ min(Fj1(x1, y1) + nj2 − x2 − y2 + x∗,

Fj2(x2, y2) + nj1 − x1 − y1 + x∗,

ni − x− y − 1) |
x1, x2, y1, y2, x

∗ ∈ N ∧
x1 + x2 + x∗ = x ∧ y1 + y2 = y + 2 · x∗ ∧
y1 ≥ x∗ ∧ y2 ≥ x∗ ∧
x1 + y1 ≤ nj1 ∧ x2 + y2 ≤ nj2 }

5.2 Computing Contraction Degeneracy 79

Proof. Let x and y be fixed nonnegative integers with x + y ≤ ni, x ≤ ni − 1. We will first prove
that F ′i (x, y) is at least the stated expression. Therefore, let x1, x2, y1, y2 and x∗ be fixed nonnegative
integers fulfilling the requirements stated in the lemma. We will first prove:

F ′i (x, y) ≥ min(Fj1(x1, y1) + nj2 − x2 − y2 + x∗,

Fj2(x2, y2) + nj1 − x1 − y1 + x∗,

ni − x− y − 1)

LetE1 andE2 be contraction-sets with |E1| = x1 and |E2| = x2 and V1 and V2 be sets of vertices with
|V1| = y1 and |V2| = y2, such that Fj1(x1, y1) = δ(Gj1/E1 \V1) and Fj2(x2, y2) = δ(Gj2/E2 \V2).
Let E∗ be a set of x∗ pairwise disjoint cross edges, each of them having one endpoint in V1 and the
other in V2, and let V ∗ =

⋃
e∈E∗ e. As |V1| = y1 ≥ x∗ and |V2| = y2 ≥ x∗, and each vertex in V1

is adjacent to each vertex in V2, we can choose such a set E∗. We define: E′ := E1 ∪ E2 ∪ E∗ and
V ′ := (V1 ∪ V2) \ V ∗.
Claim. |E′| = x and |V ′| = y.

Proof. This follows from the definition of the corresponding sets. Note that E1, E2 and E∗ are
pairwise disjoint. Furthermore, observe that V1 and V2 are disjoint and V ∗ ⊆ (V1 ∪ V2). Hence,
|V ′| = |V1|+ |V2| − |V ∗| = y1 + y2 − 2 · x∗. �

Note that V (Gi/E
′ \ V ′) can be partitioned into three disjoint sets: W1 := V (Gj1/E1 \ V1),

W2 := V (Gj2/E2 \ V2), and the set of vertices that result from contracting a cross edge, W ∗ :=
V (Gi/E

′ \ V ′) \ (W1 ∪W2).
If W1 is empty, then x1 + y1 = nj1 and Fj1(x1, y1) = ∞. Otherwise, let v1 be a vertex in

Gj1/E1 \ V1 of minimum degree, i.e. dGj1/E1\V1
(v1) = Fj1(x1, y1). From Lemma 73, we know that

all other vertices in Gj1/E1 \ V1 have degree in Gi/E′ \ V ′ as least as large as the degree of v1 in
Gi/E

′ \V ′. So, by Lemma 72 all vertices inW1 have degree at least dGj1/E1\V1
(v1)+nj2−x2−y2 +

x∗ ≥ Fj1(x1, y1)+nj2−x2−y2 +x∗. Similarly, eitherW2 is empty, in which case Fj2(x2, y2) =∞,
or all vertices in W2 have degree at least Fj2(x2, y2) + nj1 − x1 − y1 + x∗.

Vertices that are the result of a contraction of a cross edge are universal in Gi/E
′ \ V ′, and hence

have degree ni − x− y − 1.
We can conclude that

F ′i (x, y) ≥ δ(Gi/E′ \ V ′)
≥ min(Fj1(x1, y1) + nj2 − x2 − y2 + x∗,

Fj2(x2, y2) + nj1 − x1 − y1 + x∗,
ni − x− y − 1)

Since this holds for all x1, x2, y1, y2 and x∗, fulfilling the conditions as in the lemma, we can conclude:

F ′i (x, y) ≥ max{ min(Fj1(x1, y1) + nj2 − x2 − y2 + x∗,

Fj2(x2, y2) + nj1 − x1 − y1 + x∗,

ni − x− y − 1) |
x1, x2, y1, y2, x

∗ ∈ N ∧
x1 + x2 + x∗ = x ∧ y1 + y2 = y + 2 · x∗ ∧
y1 ≥ x∗ ∧ y2 ≥ x∗ ∧
x1 + y1 ≤ nj1 ∧ x2 + y2 ≤ nj2 ∧ }

80 5 Contraction Degeneracy on Cographs

We now show the equality, i.e. we show that F ′i (x, y) is at most the given expression. Let E ′ be a
contraction-set of size x containing pairwise disjoint cross edges, and V ′ be a vertex set of size y such
that F ′i (x, y) = δ(Gi/E

′ \ V ′). E′ and V ′ can be partitioned in the following way:

E1 := Ej1 ∩ E′ E2 := Ej2 ∩ E′ E∗ := E′ \ (E1 ∪ E2)
V1 := Vj1 ∩ (V ′ ∪ V ∗) V2 := Vj2 ∩ (V ′ ∪ V ∗) V ∗ :=

⋃
e∈E∗ e

x1 := |E1| x2 := |E2| x∗ := |E∗|
y1 := |V1| y2 := |V2|

Claim. x = x1 + x2 + x∗, y1 + y2 = y + 2 · x∗, y1 ≥ x∗, y2 ≥ x∗, x1 + y1 ≤ nj1 , x2 + y2 ≤ nj2 ,
x1 ≤ nj1 , x2 ≤ nj2 .

Proof. The first equality follows directly from the corresponding definitions.
Note that E∗ is a contraction-set containing all cross edges of E ′ (they are pairwise disjoint).

Hence, |V ∗| = 2 · x∗. Furthermore, observe that Vj1 and Vj2 are disjoint and Vj1 ∪ Vj2 = Vi ⊇
(V ′∪V ∗). Therefore, y1 +y2 = |V1|+|V2| = |Vj1∩(V ′∪V ∗)∪Vj2∩(V ′∪V ∗)| = |Vi∩(V ′∪V ∗)| =
|V ′ ∪ V ∗| = y + 2 · x∗.

The inequality y1 ≥ x∗ follows from y1 = |V1| = |Vj1 ∩ (V ′ ∪ V ∗)| ≥ |Vj1 ∩ V ∗| = |E∗| = x∗.
The equality |Vj1 ∩V ∗| = |E∗| can be seen from the fact that E∗ contains exactly x∗ pairwise disjoint
cross edges that have one endpoint in Vj1 and the other endpoint in Vj2 .

Since E1 is the subset of E ′, restricted to Gj1 , E1 is a contraction-set of Gj1 , and V1 is a subset of
vertices in Gj1/E1, since V ′ is a subset of vertices in Gi/E′. Hence, x1 + y1 ≤ nj1 and x1 ≤ nj1 .

In the same way, we can conclude y2 ≥ x∗, x2 + y2 ≤ nj2 and x2 ≤ nj2 . �
Similar as above, we write W1 = V (Gj1/E1 \V1), W2 = V (Gj2/E2 \V2) and W ∗ = V (Gi/E

′ \
V ′) \ (W1 ∪W2) for the set of vertices resulting from contracting a cross edge. Note that W1, W2 and
W ∗ partition V (Gi/E

′ \ V ′). We consider four different cases.

Case 1 ‘W1 = ∅ and W2 = ∅’: In this case, Gi/E′ \ V ′ is a clique with x∗ vertices, as each vertex in
this graph is the result of a contraction of a cross edge. So, δ(Gi/E

′\V ′) = x∗−1 = ni−x−y−1. As
W1 = ∅, we must have that nj1−x−y−1, and hence Fj1(x1, y1) =∞. Similarly, Fj2(x2, y2) =∞.
So,

F ′i (x, y) = δ(Gi/E
′ \ V ′)

= min(Fj1(x1, y1) + nj2 − x2 − y2 + x∗,
Fj2(x2, y2) + nj1 − x1 − y1 + x∗,
ni − x− y − 1)

Case 2 ‘W1 6= ∅ and W2 = ∅’: First note that W2 = ∅ implies that Fj2(x2, y2) = ∞, similar to the
previous case. Take a vertex v1 ∈ W1 which has minimum degree in Gi/E′ \ V ′. Note that vertices
in W ∗ are universal in Gi/E′ \ V ′, hence have a degree that is at least the degree of v1 in this graph.
So, we have (use Lemmas 72 and 73)

F ′i (x, y) = δ(Gi/E
′ \ V ′)

= dGi/E′\V ′(v1)

= dGj1/E1\V1
(v1) + nj2 − x2 − y2 + x∗

≤ Fj1(x1, y1) + nj2 − x2 − y2 + x∗

= min(Fj1(x1, y1) + nj2 − x2 − y2 + x∗,
Fj2(x2, y2) + nj1 − x1 − y1 + x∗,
ni − x− y − 1)

5.2 Computing Contraction Degeneracy 81

The last step follows by using that Fj2(x2, y2) =∞, and noting that Fj1(x1, y1)+nj2−x2−y2+x∗ ≤
nj1 − x1 − y1 − 1 + nj2 − x2 − y2 + x∗ = ni − x− y − 1.

Case 3 ‘W1 = ∅ andW2 6= ∅’: Similar to the previous Case 2, with the roles ofW1 andW2 exchanged.

Case 4 ‘W1 6= ∅ and W2 6= ∅’: As in Case 2, Fj1(x1, y1) +nj2 −x2− y2 +x∗ ≤ ni−x− y− 1, and
similar Fj2(x2, y2) +nj1 −x1− y1 +x∗ ≤ ni−x− y− 1. Take a vertex v1 ∈W1 that has minimum
degree in Gi/E′ \ V ′ among all vertices in W1, and similarly take a vertex v2 ∈ W2 with minimum
degree in Gi/E′ \ V ′. Again, vertices in W ∗ have a degree that is at least the degree of v1 (or v2) in
Gi/E

′ \ V ′. So, we have using Lemmas 72 and 73:

F ′i (x, y) = δ(Gi/E
′ \ V ′)

= min(dGi/E′\V ′(v1),

dGi/E′\V ′(v2))

= min(dGj1/E1\V1
(v1) + nj2 − x2 − y2 + x∗,

dGj2/E2\V2
(v2) + nj1 − x1 − y1 + x∗)

≤ min(Fj1(x1, y1) + nj2 − x2 − y2 + x∗,
Fj2(x2, y2) + nj1 − x1 − y1 + x∗)

= min(Fj1(x1, y1) + nj2 − x2 − y2 + x∗,
Fj2(x2, y2) + nj1 − x1 − y1 + x∗,
ni − x− y − 1)

This ends the last case of the proof, and hence we can conclude Lemma 75. ut

Now we have seen that our recurrence relation for F ′i is correct, we will show how we can compute
Fi given F ′i .

Lemma 76.

Fi(x, y) = max
0≤z≤x

F ′i (x− z, y + z)

Proof. We will first prove that Fi(x, y) ≥ max0≤z≤x F ′i (x− z, y + z).

Claim. Fi(x, y) ≥ F ′i (x− 1, y + 1).

Proof. Let E′ be a contraction-set of size x − 1 containing only pairwise disjoint cross edges, and
let V ′ be a vertex set of size y + 1 such that: F ′i (x − 1, y + 1) = δ(Gi/E

′ \ V ′). Let v ∈ V ′ be
a vertex that we deleted in Gi/E′ \ V ′, i.e. v ∈ V ′. Instead of deleting it, we can contract it using
a cross edge e incident to v. Since v is not contained in Gi/E

′ \ V ′, contracting it via a cross edge
(no matter whether e has nonempty intersection with another cross edge in E ′), will not decrease any
vertex degree. Note that unless v is the only vertex left, a cross edge incident to v always exists, since
Gj1 and Gj2 are graphs with at least one vertex each. Hence, we have a contraction-set E ′ ∪ {e} of x
edges and a vertex set V ′ \ {v} of y vertices, such that:

Fi(x, y) ≥ δ(Gi/(E′ ∪ {e}) \ (V ′ \ {v})) ≥ F ′i (x− 1, y + 1)

�

82 5 Contraction Degeneracy on Cographs

A similar argument can be used when 2 ≤ z ≤ x. In this case, we contract z vertices with cross
edges incident to them instead of deleting them. Thus, for all z, 0 ≤ z ≤ x, we have Fi(x, y) ≥
F ′i (x− z, y + z), and hence

Fi(x, y) ≥ max
0≤z≤x

F ′i (x− z, y + z) (5.1)

We will now show that Fi(x, y) ≤ max0≤z≤x F ′i (x− z, y+ z). Let E ′ be a contraction-set of size
x, and let V ′ be a vertex set of size y, such that Fi(x, y) = δ(Gi/E

′ \ V ′). Let E∗ ⊆ E′ be the set
of all cross edges in E ′, and let be V ∗ :=

⋃
e∈E∗ e. Observe that (V ∗, E∗) is a forest without isolated

vertices. Let c be the number of connected components in (V ∗, E∗). We modify E∗ in the following
way to obtain E∗∗. In each connected component of (V ∗, E∗), we delete all but one edge, resulting
in the forest (V ∗, E∗∗). Let be V ∗∗ :=

⋃
e∈E∗∗ e. Clearly, E∗∗ only contains pairwise disjoint cross

edges and |E∗∗| = c, |V ∗∗| = 2c. We define:

E′′ := (E′ \ E∗) ∪ E∗∗ and V ′′ := V ′ ∪ (V ∗ \ V ∗∗) and z := |E′| − |E′′|

Claim. |E′′| = |E′| − z = x− z and |V ′′| = |V ′|+ z = y + z.

Proof. |E′′| = |E′|−z follows directly from the definition of z. To see the other equality, note that the
vertex sets are disjoint or contained in each other when applying basic operations. Furthermore, note
that in a forest, the number of edges plus the number of connected components equals the number of
vertices. We therefore have:

|V ′′| = |V ′ ∪ (V ∗ \ V ∗∗)| = |V ′|+ |V ∗| − |V ∗∗| = y + |E∗|+ c− 2c

= y + |E∗| − c = y + |E∗| − |E∗∗| = y + |E′| − |E′|+ |E∗| − |E∗∗|
= y + |E′| − (|E′| − |E∗|+ |E∗∗|) = y + |E′| − (|E′ \ E∗|+ |E∗∗|)
= y + |E′| − |(E′ \ E∗) ∪ E∗∗| = y + |E′| − |E′′| = y + z

�

Claim. Let E′ contain two nondisjoint cross edges. e = {u1, u2} and f = {u2, w}, such that there is
no other edge inE′ than ewith non-empty intersection with f . Let v be a vertex inGi/(E

′\{f})\V ′.
Then it holds that: dGi/E′\V ′(v) = dGi/(E′\{f})\(V ′∪{w})(v).

Proof. Ifw is not adjacent to v then the claim follows easily. So suppose {v, w} is an edge inGi/(E
′\

{f})\V ′. Since e was (w.l.o.g.) contracted before f , the vertex created by contracting e is a universal
vertex ae. Now, we can either delete vertex w, resulting in decreasing the degree of v by one, or we
can contract edge f to the universal vertex ae, which also results in ‘losing’ one edge incident to v,
since {ae, v} is already present in Gi/(E′ \ {f}) \ V ′. Hence, the degree of v is the same in both
cases. �

Applying the last claim iteratively, we can conclude: δ(Gi/E
′ \ V ′) = δ(Gi/E

′′ \ V ′′). Hence,
there is a z, such that Fi(x, y) = F ′i (x−z, y+z). From this fact and Equation 5.1, the lemma follows.

ut

5.2.3 The Dynamic-Programming Method

Now, we are able to formulate our main result. So far, we only presented the recurrence relations
necessary for dynamic programming. It is an easy task to transform these relations into an algorithm
for computing the contraction degeneracy of a cograph..

5.3 Concluding Remarks 83

Theorem 77. There is an O(n6) time algorithm to compute the contraction degeneracy of a given
cograph G with n vertices.

Proof. Given a cograph G, we first build the cotree in linear time [38, 27], from which the binary
cotree can be easily derived. We then compute in bottom-up order for each node i in the cotree
the relevant values of Fi. For 1-nodes, we first compute F ′i . These computations are as dictated by
Lemmas 70, 74, 75 and 76. After the root values are computed, we use Lemma 69 to compute the
contraction degeneracy of G.

To estimate the running time, consider the formula for computing F ′i on 1-nodes, since the com-
putation time needed for this formula dominates the others. We can implement this formula by five
nested loops, for x1, x2, y1, y2 and x∗, ranging over the appropriate domains (at most {0, ..., ni}). In
the innermost loop body, we check the restrictions, compute x, y and the minimum as given in the
formula, and we update F ′i (x, y) if we have found a larger value. This loop takes O(n5) time, and
since we have O(n) internal nodes in the cotree, the theorem follows. ut

It is also possible to obtain in O(n6) time the set of contractions that achieve the contraction
degeneracy, using standard techniques for transforming a dynamic-programming-decision algorithm
into one that also constructs solutions.

5.3 Concluding Remarks

The contraction degeneracy of a graph appears to be an interesting graph parameter, not only as a
lower bound for treewidth. So far, little is known for it. Its strong relation to the well-understood
minimum degree δ and degeneracy δD of a graph, and its elementary nature make it a worthwhile
object of study. In this chapter, we have presented a dynamic-programming method for computing the
contraction degeneracy of a cograph. The running time of our algorithm is polynomial but surprisingly
high, since cographs are a very restricted class of graphs with a tree representation, that usually enables
faster algorithms. This might be a consequence of the possible inherent hardness of computing δC of
a graph. However, it might be possible to obtain a slightly more efficient time-bound by a more careful
analysis of our algorithm. It therefore remains an interesting topic for further research to decrease the
running time for cographs or to develop algorithms for other special graph classes.

6

Network Reliability:
Model, Problems and Complexity

In a world with a growing need for communication and data exchange, computer and telecommuni-
cation networks play a decisive role. In most applications, it is of great importance that connections
between the communicating parties remain intact. Unfortunately, hardware and software are not infal-
lible. For this reason modern networks are designed such that two communication sites can have more
than one possibility of information exchange. Furthermore, one can often observe that some sites in a
network are of greater importance than others. For instance, connections between servers may be more
important than between clients. It is important to compute the reliability of a network not only during
the construction process but also for improving and determining the quality of existing networks.

In this chapter, we look at two classical network reliability problems (Section 6.1) and briefly
describe the model they are based on. We define our graph-theoretical model in Section 6.2. Also in
this section, we explain how edge failures can be simulated by vertex failures, and we give a list of
relevant network reliability problems. The related complexity issues are the topic of Section 6.3, where
we first give some definitions and background information and then prove the #P ′-membership and
-hardness of our problems. This chapter is an adaptation from joint work with Hans L. Bodlaender
(see [21]).

6.1 The Classical Network Reliability Problems

The two classical network reliability problems which are considered here, are based on the following
model, which is used e.g. in [4]. Let an undirected, simple graphG be given with a number pe ∈ [0, 1]
associated to each edge e of G. This number pe is the reliability of edge e. In this classical model only
links between sites can break down independently of each other, i.e. some edges between vertices
might not be present in the surviving subgraph. The surviving subgraph is the subgraph consisting of
all elements corresponding to objects that are not broken down. Therefore, pe is the probability that
the edge e is present in the surviving subgraph. We can now consider the following classical problems:

• [2↔ t]e (Two Terminal Network Reliability Problem): What is the probability that there is a path
between two distinguished vertices s and t, given the reliabilities pe for the edges?

• [A ↔ t]e (All Terminal Network Reliability Problem): What is the probability that all vertices
remain connected, given the reliabilities pe for the edges?

We will use the abbreviations with brackets as the name of the respective problems when we refer to
network reliability problems (e.g. in formulas or figures). The subscript e indicates that only edges
can fail in the underlying model.

86 6 Network Reliability: Model, Problems and Complexity

6.2 Our Network Reliability Problems

Our model generalises the classical model in a way that allows more complicated questions about the
connectivity of two distinguished sets of vertices. For instance, in the situation where we have a set
of clients and a set of servers, we could ask the following questions: ‘What is the probability that
all clients are connected to at least one server?’ or ‘What is the expected number of components of
the graph induced by the non-failed elements that contain a server?’ Before we have a look at more
examples of network reliability problems that we will prove to be #P ′-complete (see Section 6.3),
we introduce the graph-theoretical model which the problems are based on. We will restrict ourselves
to vertex-failures and assume that edges are perfectly reliable. However, we will see that this does not
restrict the expressiveness of our model, because edge failures can be modelled by vertex failures.

6.2.1 Our Graph-theoretical Model

In contrast to the classical model, where only edges can fail, we have a model where only vertices
can break down. For all our network reliability problems, we are given an undirected, simple graph
G = (V,E) in which to each vertex v ∈ V a rational number p(v) ∈ [0, 1] is associated:

p(v) =
av
bv
, av, bv ∈ N, av ≤ bv, bv 6= 0, and

av, bv have no common divisor greater than 1

For each v ∈ V , the number p(v) is the reliability of v. It models the probability that the network
element represented by v is properly functioning. We are interested in the subgraph of G obtained as
follows: each v ∈ V is in the subgraph with probability p(v), and each edge is in the subgraph if and
only if both its endpoints are in the subgraph. Such a model is often called a stochastic graph. The
subgraph resulting from this experiment is called the surviving subgraph. The vertices in the surviving
subgraph are said to be up, while the others not in the surviving subgraph are said to be down. We
assume that the occurrence of failures of elements are statistically independent.

Furthermore, we are given a set S ⊆ V of servers and a set L ⊆ V of clients, nS = |S| and
nL = |L|. S and L might have vertices in common. In addition, we also have other vertices that serve
simply to build connections.

The problems we consider, ask for the probabilities that there are certain connections between
vertices in S, and also that there are certain connections between vertices of S and vertices of L.
These problems are listed in Section 6.2.3.

6.2.2 Edge Failures vs. Vertex Failures

In the classical network reliability problems only links between sites can fail; or translated into graph
theory: only edges of the graph can be non-present. In our model, however, we consider network
reliability problems where only vertices can go down (and hence their incident edges with them),
and edges between two present vertices will always be present in the graph (i.e. existing edges are
perfectly reliable).

This model with only vertex failures is not a restriction, since edge failures can be simulated by
vertex failures in the following way. Subdivide each edge e = {u,w} of the original graph with a new
vertex ve (see Figure 2.5 in Section 2.5). The reliability of ve is set to be equal to the reliability pe
of the edge e = {u,w}: p(ve) = pe. All edges of the resulting graph will be defined to be perfectly
reliable. This construction will at most polynomially increase the size of the graph. However, the size
of graphs of bounded treewidth will increase only linearly, and the treewidth also does not increase
with this construction (see Section 2.5 for more details).

6.3 Complexity of Network Reliability Problems 87

6.2.3 A List of Network Reliability Problems

In this section, we consider some examples of network reliability problems that can be modelled in
our model. It is not difficult to give more examples, and hence, the list of problems below is not
complete. It contains only those problems that are proven to be #P ′-complete later in this chapter. As
for the classical network reliability problems, we will use the abbreviation with brackets to refer to a
problem.

• [2↔ t]: What is the probability that there is a path in the surviving subgraph between two distin-
guished vertices u and v?

• [S ↔ t]: What is the probability that all servers (S) are connected in the surviving subgraph?
• [L↔≥ 1S]: What is the probability that each client (L) is connected to at least one server (S) in

the surviving subgraph?
• [≥ xS]: What is the probability that at least x servers are connected to each other in the surviving

subgraph?
• [Ec ≥ 1S]: What is the expected number of components of the surviving subgraph with at least

one server?
• [≥ x1L 6↔≥ 1S]: What is the probability that at least x1 clients are not connected to a server in

the surviving subgraph?
• [≤ x2L ↔≥ 1S]: What is the probability that at most x2 clients are connected to at least one

server in the surviving subgraph?
• [< x3L 6↔≥ 1S]: What is the probability that less than x3 clients are not connected to a server in

the surviving subgraph?
• [> x4L ↔≥ 1S]: What is the probability that more than x4 clients are connected to at least one

server in the surviving subgraph?
• [1 − [< x3L 6↔≥ 1S]]: What is the probability that it is not the case that less than x3 clients are

not connected to a server in the surviving subgraph?
• [≤ yS 6↔ L]: What is the probability that at most y servers are not connected to a client in the

surviving subgraph?
• [≥ xL↔ S∧ ≥ yS ↔ L]: What is the probability that in the surviving subgraph at least x clients

are connected to at least one server, while at least y servers are connected to at least one client?
• [≥ 1L ↔≥ xS]: What is the probability that in the surviving subgraph at least one client is

connected to at least x servers?

6.3 Complexity of Network Reliability Problems

More than twenty-five years ago, Rosenthal [86] showed that the classical network reliability problems
[2↔ t]e and [A↔ t]e areNP -hard to approximate. Provan and Ball [75] and Valiant [94] showed that
these classical network reliability problems are #P -hard. A similar result was shown independently
by Jerrum [59].

More precisely, Valiant [94] shows that computing the number of subgraphs or induced subgraphs
of a given graph G such that there is a path between two given vertices s and t is #P -complete.
Provan and Ball show in [75] the #P -hardness for the All Terminal Network Reliability Problem.
They state that the problem is #P -complete but do not give a proof of the membership of the problem
in #P . They also show that it is #P -hard to approximate the two problems, even for the case when
all edges have the same reliability. Jerrum [59] showed that the probability that the surviving network

88 6 Network Reliability: Model, Problems and Complexity

is connected, viewed as a polynomial in the edge failure probabilities, is complete for Valiant’s class
of P -definable polynomials with respect to P -projections.

The complexity class #P was first defined by Valiant [94] and contains only integer-valued func-
tions. However, notions related to #P (e.g. #P -completeness) were also used for functions that have
rational values (e.g. solutions of the All Terminal Network Reliability Problem). To avoid confusion
and formal inadequacies, we will define another class #P ′ that is an extension of #P to include
rational-valued functions. #P ′ was called #P in [75]. We use the different notation #P ′ to avoid
confusion with the original class #P . Valiant’s result [94] then implies the #P ′-completeness of the
Two Terminal Network Reliability Problem for the case when all edges, or all vertices (except possibly
s and t), respectively, have the same reliability.

Where NP , NP -hardness and NP -completeness deal, roughly said, with verifying and find-
ing one solution to a combinatorial problem, #P , #P -hardness and #P -completeness deal, again
roughly said, with establishing the number of solutions to a combinational problem. As the problem
of counting the number of solutions to a problem is at least as hard as determining if there is at least
one solution, #P -complete problems are ‘as least as hard’, but possibly harder than NP -complete
problems.

In this chapter, we prove the problems presented in the list in Section 6.2.3 to be #P ′-complete on
general graphs. These proofs consist, as usual, of two parts: proofs of membership in #P ′ and trans-
formations from problems known to be #P ′-hard. Unlike as is common forNP -completeness proofs,
the membership part is not entirely trivial, although it is not very complex. And since, as mentioned
before, the proofs of membership in #P ′ of the network reliability problems are not available in cur-
rently easily accessible scientific literature, we give such a proof here (Lemma 82 and Lemma 83) for
two of the considered problems; the other problems can be showed to belong to #P ′ in the same way.

6.3.1 Complexity Theory Background

Valiant introduced in [94] the notions #P and #P -completeness to express the hardness of problems
that ‘count the number of solutions’. More precisely, #P is the set of integer-valued functions that
express the number of accepting computations of a nondeterministic Turing machine of polynomial-
time complexity. Let FP represent the class of polynomial-time computable functions. Furthermore,
let Σ be the finite alphabet of the input and output of the Turing machines considered in this chapter.
The next definition that defines #P equivalently to Valiant’s definition, can be found in [48], which
also contains an extensive overview of the theory of counting complexity.

Definition 78 (see [48]). The complexity class #P consists of the functions f : Σ∗ ⇒ N such that
there exists a nondeterministic polynomial-time Turing machine M such that for all inputs x ∈ Σ∗,
f(x) is the number of accepting paths of M(x).

Provan and Ball [75] extended Valiant’s notion of #P and #P -completeness to deal with functions
with a range of multiple or rational values. As problems like the network reliability problems are
functions to the rational numbers in [0, 1] and not to the integers, we cannot say, using Valiant’s
definition, that they belong to #P .

Definition 79. A language (function) g is polynomially transformable to a language (function) f , writ-
ten as g ≤ f , if there exists a Turing machine that for any input x, computes g(x) with a polynomial
(in the size of x) number of elementary operations and evaluations of language (function) f . (The size
of x is the number of bits needed to denote x.) A function f is #P -hard, if every function g in #P is
polynomially transformable to f , and f is #P -complete, if f belongs to #P and f is #P -hard.

6.3 Complexity of Network Reliability Problems 89

If we would use the terminology of [75], we would indeed be able to prove that our network reli-
ability problems are #P -complete. In order not to depart from most of the current complexity theory
literature, we restrict our use of the notion of #P and #P -completeness to the original definition (see
Definition 78), and denote the version we use for dealing with another type of functions as #P ′. We
define #P ′ as the class of functions h : Σ∗ ⇒ Σ∗, that can be computed in polynomial time from
input x and a value f(x) for some f ∈ #P . Whenever needed, we implicitly convert numbers into
strings, i.e. we interpret elements in N or Q as strings over a fixed alphabet Σ.

Definition 80. The class #P ′ is defined as follows.

#P ′ = { h | h : Σ∗ ⇒ Σ∗,
∃f ∈ #P, f : Σ∗ ⇒ N,
∃g ∈ FP, g : N×Σ∗ ⇒ Σ∗,
∀x ∈ Σ∗ : h(x) = g(f(x), x) }

Hardness and completeness for this class are defined as usual.

Lemma 81. Let h′ : Σ∗ ⇒ Σ∗ be a function.

1. #P ⊆ #P ′.
2. h′ is #P -hard =⇒ h′ is #P ′-hard.
3. h′ is #P -complete =⇒ h′ is #P ′-complete.

Proof. 1. This follows trivially from the definition by choosing g to be the projection on the first
argument.

2. For all f ∈ #P , we have: f ≤ h′, since h′ is #P -hard. Hence, there is a deterministic Turing
machine M that when given input x ∈ Σ∗ computes f(x), using polynomial time and a polynomial
number of evaluations of h′. Let h ∈ #P ′, i.e. h(x) = g(f(x), x) for f ∈ #P , g ∈ FP and all
x ∈ Σ∗. We describe a deterministic Turing machine M ′ that for input x ∈ Σ∗ computes h(x),
using polynomial time and a polynomial number of evaluations of h′. At input x, M ′ computes f(x)
by simulating machine M . After that, M ′ computes deterministically in polynomial time h(x) =
g(f(x), x), since g ∈ FP . Hence we have: h ≤ h′, for all h ∈ #P ′.

3. This follows directly from 1. and 2. ut

6.3.2 #P ′-membership

As already mentioned, for showing the completeness of a problem for a complexity class, we have
to show the hardness of the problem and the membership in this complexity class. Using Valiant’s
original definition of #P [94], we cannot prove the membership of our network reliability problems.
Instead, we prove that these problems belong to #P ′ by constructing #P ′-Turing machines. However,
we will only have a close look at the two problems [2 ↔ t] and [Ec ≥ 1S], since the description of
the machines is very similar for the other problems.

Often, a nondeterministic Turing machine is described as a machine that can branch in only 2 (or
any other constant) computation paths at each step. However, to ease the description of our machines,
we will use machines that branch in bv computation paths at step for vertex v. In our case this is al-
lowed, because such a branch in bv paths can be simulated by dlog bve binary branches, see Figure 6.1.
Note that we need dlog bve bits to represent bv in the input x. Hence, we see easily that the first n steps
of our machines can be simulated by

∑
v∈V dlog bve steps of a machine with only binary branches.

This is linear in the input size. If bv is not a power of 2, in some branches, we stop branching at an
earlier time. Thus, the overall length of a computation path after the ‘blowup’ due to a restriction to
binary branches is still bounded by a polynomial.

90 6 Network Reliability: Model, Problems and Complexity

Figure 6.1. Simulating one bv-branch by dlog bve binary branches.

Lemma 82. [2↔ t] ∈ #P ′

Proof. To prove the membership in #P ′, we specify a function h ∈ #P ′ by describing functions
f ∈ #P and g ∈ FP with h(x) = g(f(x), x) for all x ∈ Σ∗. The description of h can be considered
as a description of a #P ′ Turing machine.

To describe f , we give a #P Turing machine M with f(x) = #M(x), where #M(x) is the
number of accepting computation paths of machine M with input x. M is constructed as follows.
During the first n = |V | steps, M considers each vertex of G, one at a time. In the step for vertex
v, M branches bv times, where in av branches the vertex v is present in the graph G and in bv − av
branches, vertex v is not present inG. (The numbers av and bv are nonnegative integers specifying the
probability p(v) = av

bv
as in Section 6.2.1.) After considering each vertex,M decides deterministically

on each computation path, whether the desired property is fulfilled. In our case checking the desired
property is checking whether u and w are connected in the surviving subgraph corresponding to the
considered computation path of M . If this is the case, M accepts on this path, otherwise it rejects.

The probability that a vertex v is present in the graph is encoded in the total number of branches
bv at the step for vertex v, of which in exactly av branches vertex v is present in the graph. After
fixing the state of each vertex, i.e. after n steps, each path represents exactly one surviving subgraph.
Note, however, that each surviving subgraph G′ might be represented by more than one such path,
depending on the occurrence probability of G′. Hence, it is easy to see, that the probability h(x) that
u and w are connected is:

h(x) =
#M(x)

total number of paths of M(x)

The number of accepting paths #M(x) is given as f(x), but the total number of paths of M is not
given. However, this number can be computed in polynomial time by function g as the product over
all vertices v of bv:

h(x) = g(f(x), x) =
f(x)∏
v∈V bv

ut

The method used above works also for all network reliability problems considered in this chapter
that have the form: ‘What is the probability that the surviving subgraph has property X?’ However,
problem [Ec ≥ 1S] has a different form: ‘What is the expected number of components of the surviving
subgraph that have property Y ?’ and hence, we use a slightly different Turing machine and different
functions to prove its #P ′-membership.

Lemma 83. [Ec ≥ 1S] ∈ #P ′

Proof. Similar to the proof of Lemma 82, we give functions f (i.e. a Turing machine M , with f(x) =
#M(x)) and g.

6.3 Complexity of Network Reliability Problems 91

M is constructed as follows. The first n steps are the same as of the machine described in the proof
of Lemma 82. However, after these steps, (i.e. after the surviving subgraph on each computation path
so far, is completely defined), machine M works differently. Note that for the expected number h(x)
of components of the surviving subgraph with at least one server we have:

1 ≤ h(x) ≤ n = |V |

Furthermore, note that for each fixed surviving subgraph G′, the number c(G′) of components with
at least one server is a number in N. After the first n steps M branches on each computation path
into exactly c(G′) accepting paths, where G′ is the surviving subgraph defined by the corresponding
computation path. If c(G′) = 0 then M does not branch any further but rejects on this path. We use
the same function g as in the proof of Lemma 82.

h(x) = g(f(x), x) =
f(x)∏
v∈V bv

We can see in the following way that this is indeed correct. When we consider the computation
tree of M as a probability distribution, we see that after the first n steps every path has the same
probability. The different probabilities of the surviving subgraphs G′ are expressed by an appropriate
number of paths that define G′. This automatically assigns the correct weights to c(G′) for all G′,
when computing the expected number of components with at least one server. ut

Due to the last two lemmas and the similarity of the problems in the list in Section 6.2.3, the
correctness of the following corollary is easy to see.

Corollary 84. The following network reliability problems are in #P ′: [2↔ t], [S ↔ t], [L↔≥ 1S],
[≥ xS], [Ec ≥ 1S], [≥ x1L 6↔≥ 1S], [≤ x2L ↔≥ 1S], [< x3L 6↔≥ 1S], [> x4L ↔≥ 1S],
[1− [< x3L 6↔≥ 1S]], [≤ yS 6↔ L], [≥ xL↔ S∧ ≥ yS ↔ L] and [≥ 1L↔≥ xS].

When we want to show membership in #P ′ for network reliability problems where edges can
fail, the proof of Lemma 82 is changed as follows: The first n = |V | branching steps which make
‘decisions’ for every vertex, would be replaced by m = |E| branching steps making the decisions
whether this edge is ‘up’ or ‘down’ for every edge on a certain computation path.

6.3.3 #P ′-hardness

In this section, we prove the #P ′-hardness of the problems given in the list of network reliability
problems in Section 6.2.3. For each problem we give a simple transformation from a known #P -hard
problem, thus proving the considered problem to be #P -hard. The #P ′-hardness of the problems
then follows directly from Lemma 81.

Lemma 85. The following network reliability problems are #P -hard: [2↔ t], [S ↔ t], [L↔≥ 1S],
[≥ xS], [Ec ≥ 1S], [≥ x1L 6↔≥ 1S], [≤ x2L ↔≥ 1S], [< x3L 6↔≥ 1S], [> x4L ↔≥ 1S],
[1− [< x3L 6↔≥ 1S]], [≤ yS 6↔ L], [≥ xL↔ S∧ ≥ yS ↔ L] and [≥ 1L↔≥ xS].

Proof. For each of the problems, we give a transformation from a problem that is known to be #P -
hard.

92 6 Network Reliability: Model, Problems and Complexity

[2↔ t]e ≤ [2↔ t]:

Given an instance of [2↔ t]e, we construct an instance of [2↔ t] by simulating edges as described in
Section 6.2.2. All vertices v that do not simulate an edge are perfectly reliable, i.e. they have p(v) = 1.
It is easy to see that this is a correct transformation. The same transformation can be used to show
that [2 ↔ t] with the additional requirement that both distinguished vertices are perfectly reliable is
#P -hard.

[2↔ t] ≤ [S ↔ t]:

Suppose we are given an instance of [2 ↔ t] with two distinguished vertices u and v. We turn this
into an instance of [S ↔ t] by simply letting u and v be the only servers. Again, as the transformation
does not change the value of the requested probability, we have a correct transformation from [2↔ t]
to [S ↔ t].

[A↔ t]e ≤ [S ↔ t]:

Given an instance of [A ↔ t]e, we construct a [S ↔ t]-instance by simulating edges as described in
Section 6.2.2. We let the set of servers be the set of vertices that do not simulate an edge. Note that
these are perfectly reliable. This transformation does not change the value of the requested probability.

[S ↔ t] ≤ [L↔≥ 1S]:

Let an instance of [S ↔ t] be given. We assume that we do not have clients, and if we have, we delete
their ‘client’-flag, turning them to non-clients. Now, we choose an arbitrary server. This is again a
server in the new to be formed instance. All other servers in the [S ↔ t]-instance become clients in
the new instance. Thus, we have formed an instance of [L↔≥ 1S]. Now, one can note that all servers
are connected in the [S ↔ t]-instance, if and only if each client is connected to at least one server
in the [L ↔≥ 1S]-instance. Hence, this transformation does not change the value of the requested
probability.

[2↔ t] ≤ [≥ xS]:

Suppose we are given an instance of [2 ↔ t]. Taking the two distinguished vertices as the only two
servers and setting x = 2 gives an instance of [≥ xS] with the same probability value.

[2↔ t] ≤ [Ec ≥ 1S]:

More precisely, we give a transformation from the version of [2 ↔ t] where we assume that both
distinguished vertices are perfectly reliable. We have argued above that this version is also #P -hard,
so this is not a restriction. Let a [2 ↔ t]-instance G be given, where the two distinguished vertices
are perfectly reliable. Mark the two distinguished vertices u and v as the only servers, which gives
us a [Ec ≥ 1S]-instance G′. Let P be the probability that there is a path between u and v in the
surviving subgraph Ḡ of G, and let E be the expected number of components with at least one server
in the surviving subgraph Ḡ′ of G′. E is the sum of the probability that the two servers are in one
component in the surviving subgraph and two times the probability that the two servers are in two
different components in the surviving subgraph. This equals the sum of the probability that there is
a path between u and v in the surviving subgraph and two times the probability that there is no path
between u and v in the surviving subgraph. Thus, we have E = 2−P , and the transformation is easy
to see.

6.3 Complexity of Network Reliability Problems 93

[≥ x1L 6↔≥ 1S] ≡ [≤ x2L ↔≥ 1S]:

This is easy to see, because at least x1 clients are not connected to a server, if and only if at most
x2 := nc − x1 clients are connected to at least one server in the surviving subgraph.

[< x3L 6↔≥ 1S] ≡ [> x4L↔≥ 1S]:

This is also easy to see, since less than x3 clients are not connected to a server, if and only if more
than x4 := nc − x3 clients are connected to at least one server in the surviving subgraph.

In the previous two transformations, the symbol ‘≡’ does not only mean equivalence concerning the
hardness of the problems, but it could also be understood as equality of the corresponding solutions,
i.e. the solutions of the equivalent problems are equal, respectively, and hence, the transformations fol-
low trivially. In the next transformation, we use ‘≡’ in the same way, however with a complementary
problem:

For a problem [Z] in our list, we define the complementary problem [1− [Z]]. For all instances σ
of [Z], we have [Z]σ = 1− [1− [Z]]σ, i.e. [1− [Z]] maps an instance to 1 minus the value [Z] maps
the instance to. So, when [Z] gives us the probability that a certain property holds for the surviving
subgraph, [1 − [Z]] gives the probability that this property does not hold for the surviving subgraph.
Concerning the complexity of the problems, clearly [Z] ≡ [1− [Z]].

[≥ x1L 6↔≥ 1S] ≡ [1− [< x3L 6↔≥ 1S]]:

This is again not difficult to see: At least x1 clients are not connected to at least one server, if and
only if it is not the case that less than x3 := x1 clients are not connected to at least one server in the
surviving subgraph.

[L↔≥ 1S] ≤ [> x4L↔≥ 1S]:

This transformation is easy, since we do not have to modify the instance. We simply solve the [>
x4L↔≥ 1S]-problem for x4 := nc− 1 and get immediately an answer for the [L↔≥ 1S]-problem.

[< x3L 6↔≥ 1S] ≤ [≤ yS 6↔ L]:

We interchange the roles of servers and clients and we choose y := x3 − 1.

[L↔≥ 1S] ≤ [≥ xL↔ S∧ ≥ yS ↔ L]:

The [≥ xL↔ S∧ ≥ yS ↔ L]-problem contains the [L↔≥ 1S]-problem as a special case: x := nc
and y = 0.

[≥ xS] ≤ [≥ 1L↔≥ xS]:

Given a [≥ xS]-instance without any clients, we add to each server a pendant which is a private client
for this server. This results in a [≥ 1L ↔≥ xS]-instance. Now, it is easy to see, that this is a correct
transformation. ut

94 6 Network Reliability: Model, Problems and Complexity

6.3.4 Computing the Numerators of Probabilities

In this section, we take a different look at the problems from our list that ask to compute the value of
a probability, (i.e. all problems except [Ec ≥ 1S]). In the previous sections, we have defined the class
#P ′ and showed our problems to be #P ′-complete. Instead of defining a new complexity class, we
will modify the problems at hand in this section, and we will show them to be #P -complete.

The problems considered here compute a probability, and each of these probabilities is a rational
number, which can be expressed as a fraction with an easily computable denominator and a numerator
that is #P -complete to compute. As before, we assume that each vertex v ∈ V has a reliability
p(v) = av/bv, with av a nonnegative integer, and bv a positive integer. Let

D =
∏

v∈V
bv

be the product of all denominators of the reliabilities of the vertices. The following lemma can be
easily be observed.

Lemma 86. For each induced subgraph G′ of G, the probability that the surviving subgraph equals
G′ is an integer multiple of 1/D.

Given a function [X] (assumed to be one of the considered network reliability problems), we define
the function [D ∗ [X]] by taking for each input φ, [D ∗ [X]]φ = D ∗ [X]φ. For instance, [D ∗ [S ↔ t]]
asks for D times the probability that all servers are connected in the surviving subgraph.

Theorem 87. The following problems are functions to the nonnegative integers and #P -complete:
[D ∗ [2 ↔ t]], [D ∗ [S ↔ t]], [D ∗ [L ↔≥ 1S]], [D ∗ [≥ xS]], [D ∗ [≥ x1L 6↔≥ 1S]], [D ∗ [≤
x2L ↔≥ 1S]], [D ∗ [< x3L 6↔≥ 1S]], [D ∗ [> x4L ↔≥ 1S]], [D ∗ [1 − [< x3L 6↔≥ 1S]]],
[D ∗ [≤ yS 6↔ L]], [D ∗ [≥ xL↔ S∧ ≥ yS ↔ L]] and [D ∗ [≥ 1L↔≥ xS]].

Proof. Consider some property Y .The probability that the surviving subgraph has this property Y is
the sum over all induced subgraphs G′ of G with property P of the probability that the surviving
subgraph equals G′. Thus, by Lemma 86, the probability of Y is an integer multiple of 1/D. Hence,
we have that [D ∗ [Y]] is a function to the integers.

The proof of membership in #P of [D ∗ [2 ↔ t]] is similar, and even slightly easier than that of
Lemma 82: note that the requested value precisely equals the number of accepting paths #M(x). For
the other problems, membership in #P can be derived in the same way.

#P -hardness for the problems can be shown with basically the same proof as for Lemma 85. ut

So, we have for each of the considered network reliability problems apart from [Ec ≥ 1S] that
these are functions to the rational numbers, which can be written as the quotient of a #P -complete
function (a [D ∗ · · ·] variant of the problem) and a function in P (the product of all values bv). The
problems of the type [D ∗ · · ·] hence can be seen as numerator-versions of the original problems. Note
that the size of D is polynomial in the size of the given graph.

6.4 Concluding Remarks

In this chapter, we introduced the classical network reliability problems. We generalised these prob-
lems and presented the graph-theoretical model on which the problems are based. We gave a list of
some example problems according to our model, and we proved these problems to be #P ′-complete.

6.4 Concluding Remarks 95

For this, we have given a formal definition of an extension #P ′ of #P to include rational-valued
functions. The list given in Section 6.2.3 is obviously not complete. However, it is not hard to show
the same type of results for other network reliability problems of a similar ‘flavour’. The following
theorem which follows directly from Corollary 84 and Lemma 85, summarises the results of this
chapter.

Theorem 88. The following network reliability problems are #P ′-complete: [2 ↔ t], [S ↔ t],
[L ↔≥ 1S], [≥ xS], [Ec ≥ 1S], [≥ x1L 6↔≥ 1S], [≤ x2L ↔≥ 1S], [< x3L 6↔≥ 1S],
[> x4L ↔≥ 1S], [1 − [< x3L 6↔≥ 1S]], [≤ yS 6↔ L], [≥ xL ↔ S∧ ≥ yS ↔ L] and
[≥ 1L↔≥ xS].

The hardness proofs were obtained through simple transformations from known #P -hard prob-
lems. Figure 6.2 gives an overview which transformations were used. A path from left to right corre-
sponds to a chain of transformations and vertical lines represent transformations showing the hardness
equivalence of the corresponding problems. The #P -hardness of some network reliability problems

[2↔ t]

[Ec ≥ 1S]

[S ↔ t]

[L↔≥ 1S]

[≥ xS]

[≥ 1L↔≥ xS]

[≥ xL↔ S∧ ≥ yS ↔ L]

[> x4L↔≥ 1S]

[≤ x2L ↔≥ 1S]

[≥ x1L 6↔≥ 1S]

[2↔ t]e

[A↔ t]e

[≤ yS 6↔ L][< x3L 6↔≥ 1S]

Figure 6.2. The transformations in this chapter

on general graphs, motivates us and justifies to look at graphs with a special structure to enable effi-
cient algorithms. Graphs of bounded treewidth have such a special structure, and the study of network
reliability problems on these graphs is the topic of the next chapter.

7

Network Reliability:
Graphs of Bounded Treewidth

In this chapter, we develop a framework based on dynamic programming for solving network reliabil-
ity problems on graphs of bounded treewidth. The graph-theoretical model we are using, assumes that
only vertices can fail (independently of each other), and that we have two distinguished sets of ver-
tices: S (a set of servers) and L (a set of clients). The problems we are looking at include for example
the following questions: ‘What is the probability that all clients are connected to at least one server?’
(problem [L↔≥ 1S] from Chapter 6) and ‘What is the expected number of components of the graph
of the non-failed elements that contain a vertex of S?’ (problem [Ec ≥ 1S]). More generally, the
problems ask for the probability that the surviving subgraph has a certain property. Such a property
defines the connectivity between vertices of the set S, and also the connectivity between vertices of
S and vertices of L. Furthermore, the number of connected components which contain a vertex of S
or L can be dealt with. More details about the underlying model, some network reliability problems
and proofs of their computational hardness can be found in Chapter 6. In this chapter, many of these
questions are shown to be solvable in linear or polynomial time if the input graph G has bounded
treewidth.

Much work has been done on algorithms for graphs of bounded treewidth, as well as for special
network reliability problems. Arnborg and Proskurowski considered in [4] the case that only edges
can fail and that nodes are perfectly reliable. They gave a linear time algorithm for this problem on
partial k-trees, i.e. graphs of treewidth at most k. Mata-Montero generalised this to partial k-trees in
which edges as well as nodes can fail [72].

We will present a framework on graphs of bounded treewidth for answering a large number of
questions, which can be more complicated and more general than the classical network reliability
problems. In Section 7.1, we describe the general technique we are using. This technique in general
requires exponential time for solving network reliability problems. Its consideration can be seen as a
preparation for the method with equivalence classes, which we will consider in Section 7.2. There,
we will see how equivalence classes can be used to reduce the number of objects considered by the
method at hand. The smaller the number of objects the smaller the running time of the correspond-
ing algorithms. Depending on the problem, we are able to give equivalence relations that are coarse
enough to enable linear time algorithms. A closer look at equivalence relations and solvable problems
is taken in Section 7.3. Equivalence relations must fulfil certain properties if we would like to use
them in our framework. We will consider a way of creating equivalence relations that automatically
meet these requirements. Section 7.4 is devoted to an extension of our framework. We consider an
additional idea with which we can quickly answer questions that differ from our original questions.
We will see that it is possible to modify or extend our framework to answer even more questions or to
obtain faster running times. This chapter is based on previous work [96, 97].

98 7 Network Reliability: Graphs of Bounded Treewidth

7.1 A General Technique

Rosenthal introduced in [86] a decomposition method for computing network reliability measures.
This method was applied by Carlier and Lucet to solve the network reliability problems with edge and
node failures [29]. Furthermore, with this approach Carlier, Manouvrier and Lucet solved the 2-edge
connected reliability problem for graphs of bounded pathwidth [71].

We will generalise both the type of the problems which can be solved, and the method used in [29]
and [71]. Instead of looking at graphs of bounded pathwidth, we will deal with the more general class
of graphs of bounded treewidth. The dynamic-programming algorithm described in this chapter stores
solutions for subproblems in tables. The more information needed to answer a question, the bigger
the table and hence, the higher the running time of the algorithm. This starts with linear time and
can increase to exponential time. Algorithms that require exponential time are necessary for solving
problems in which most or all of the possible information must be preserved. Hence, no decrease of
information or running time is possible.

7.1.1 Specific Definitions

A scenario f assigns to each vertex v its state of operation: v is up (f(v) = 1) or down (f(v) = 0).
Hence, a scenario describes which vertices are up and which are down in the network. For the scenario
f , W f=1 is the set of all vertices of W which are up and W f=0 = W \W f=1 is the set of all vertices
of W which are down, for W ⊆ V . The probability of a scenario f (for the whole graph G) is:

Pr
V

(f) =
∏

v∈V f=1

p(v) ·
∏

v∈V f=0

1− p(v)

Clearly, there are 2|V | scenarios. The elements in L ⊆ V represent special objects, the clients, and
the elements of S ⊆ V are the servers, where nS = |S| and nL = |L|. We say W ⊆ V is connected
in G, if for any two vertices of W there is a path joining them. One can easily simulate edge failures
by introducing a new vertex on each edge, and then using the methods for networks with only node
failures. Note that this operation leaves the treewidth invariant. For more details on how to simulate
edge failures, see Sections 6.2.2 and 2.5.

Summary of Notations

Let G = (V,E) be a graph.

• p : V → [0, 1] assigns to each vertex its probability to be up
• f : V → {0, 1} assigns to each vertex its state for this scenario f
• W f=q = {v ∈W | f(v) = q}, for q ∈ {0, 1}, W ⊆ V , f : V → {0, 1}
• L ⊆ V is the set of clients of G, nL = |L|
• S ⊆ V is the set of servers of G, nS = |S|

We now give the definitions of blocks and representatives. These notions play an important role
for the main methods given in this chapter. We assume to have a nice tree-decomposition (T,X) =
((I, F), {Xi | i ∈ I}) of G = (V,E). Since T is a binary rooted tree, the ancestor relation of nodes
of the tree is well defined. As described in many articles, e.g. [8] and [10], we will use a bottom-
up approach using this tree-decomposition. Each node i of the tree can be viewed as the root of a
subtree. We will compute partial solutions for the subgraphs corresponding to these subtrees step by
step. These partial solutions are contained in tables associated to the roots of the subtrees. To compute

7.1 A General Technique 99

this information, we only need the information stored in the children of a node, which is typical for
dynamic-programming algorithms using tree-decompositions. The following definition provides us
with the terminology for the subgraphs.

Definition 89. Let G = (V,E) be a graph and (T = (I, F), X = {Xi | i ∈ I}) a nice tree-
decomposition of G. Then:

• Vi = {v ∈ Xj | j = i or j is a descendant of i}
• Gi = G[Vi]
• Li = L ∩ Vi
• Si = S ∩ Vi

Blocks

For a certain subgraph Gi = G[Vi], we consider the scenarios of G restricted to Vi. A scenario
f1 causes Gi to decompose into one or more connected components O1, ..., Oq, i.e. G[V f1=1

i] =
O1 ∪ ... ∪ Oq with V (Ox) ∩ V (Oy) = ∅ for x 6= y and 1 ≤ x, y ≤ q. For these components, we
consider the intersection with Xi. These intersection sets B1 = O1 ∩Xi, ..., Bq = Oq ∩Xi are called
blocks and we use the following notation:

blocksi(f
1) = {B1, ..., Bq}

Thus, each scenario f1 specifies a multiset of blocks. It is a multiset since more than one com-
ponent may have an empty intersection with Xi. When using the symbol ‘∪’ between multisets (of
blocks), it means the ‘multi-union’ of the sets, i.e. multiple occurrences are not deleted and the result
is again a multiset.

We augment the blocks with L-flags and/or S-flags. Since we are looking at reliability problems
with a set L of clients and a set S of servers, it is important to store the information whether Oj ∩
Lf=1 6= ∅ and/or Oj ∩ Sf=1 6= ∅. If either of this is the case we add |Oj ∩ Lf=1| L-flags and/or
|Oj∩Sf=1| S-flags to the blockBj . Hence, the blocks for a scenario f reflect the connections between
the vertices of Xi in G[V f=1

i] as well as the number of servers and clients of the components of
G[V f=1

i]. We use the notation ‘#Xflags(B)’ to refer to the number of X-flags of block B, (X ∈
{S,L}).
Definition 90. A block B of the graph Gi for scenario f is a (perhaps empty) subset of Xi extended
by x L-flags and y S-flags. For {v1, ..., vt} ⊆ Xi, we write B = {v1, ..., vt}x·Ly·S .

For small x and y instead of B = {v1, ..., vt}x·Ly·S , we can also write B = {v1, ..., vt}L..LS..S where the
number of L-flags equals x and the number of S-flags equals y.

Example of Blocks

Let Xi = {u, v, w}. Depending on Gi, example blocks could be:

• B1 = {uv}; u and v are up and connected within one component. This component contains no
vertex of S nor of L.

• B2 = { }LLS ; this represents a component with empty intersection with Xi. Furthermore this
component contains two clients and one server.

• B3 = {w}SS ; this represents a component with nonempty intersection with Xi, namely w. This
component contains no clients but two servers.

100 7 Network Reliability: Graphs of Bounded Treewidth

Representatives

For G[V f1=1
i] = O1 ∪ ... ∪ Oq, we have the following blocks B1 = O1 ∩ Xi, ..., Bq = Oq ∩ Xi,

which can be used to represent f 1. A block B of such a representation has x L-flags, if and only if
the component O corresponding to B contains exactly x vertices of L. The same is also true for the
S-flags.

To each scenario of node i, we associate the multiset of its blocks. We call this representation of a
scenario f1 its representative C1:

C1 = blocksi(f
1) = {B1, ..., Bq}

for G[V f1=1
i] = O1∪ ...∪Oq and B1 = O1∩Xi, ..., Bq = Oq ∩Xi. To Gi we associate a multiset of

representatives, one for each possible scenario. Note that two different scenarios f 1 and f2 can have
identical representatives C1 = C2, but these will be considered as different objects in the multiset
of the representatives of Gi. In Section 7.2.2, equivalence relations on scenarios and hence on repre-
sentatives are defined. Thus, equivalence classes will be formed that can correspond to more than one
scenario. It is then possible and perhaps also sensible to define C1 and C2 as equivalent. Furthermore,
it will be seen that the algorithmic techniques for computing the collection of representatives of the
graphs Gi and their corresponding probabilities will carry over with little modification to algorithms
for computing the collections of equivalence classes for many equivalence relations.

Definition 91. A representative C1 = {B1, ..., Bq} of Gi is a multiset of blocks of Gi, such that the
scenario f1 specifies B1 = O1 ∩Xi, ..., Bq = Oq ∩Xi. It must hold that #Lflags(Bj)= |Oj ∩L| and
#Sflags(Bj)= |Oj ∩ S|, for j = 1, ..., q, and G[V f1=1

i] = O1 ∪ ... ∪Oq.
The number of representatives per node is a crucial point in the algorithm running times as will be

demonstrated. As mentioned before, we therefore examine equivalence relations between scenarios in
Section 7.2.2 to reduce the number of representatives.

Example of Representatives

Let Xi = {u, v, w}. Some of the possible representatives are:

• C1 = ({uv}LLS {w}{ }L{ }S); all vertices are up, u, v are in one component containing two clients
and one server, w is in another component without clients and servers. There are two components
with empty intersection with Xi, one of them contains a client and the other a server.

• C2 = ({vw}{ }{ }{ }S); v and w are up and connected. There are three components with empty
intersection with Xi, one of them contains a server.

• C3 = ({vw}{ }S); v andw are up and connected. There is one component with empty intersection
with Xi and this component contains a vertex of S.

Here, the representatives C2 and C3 are somehow ‘similar’. They only differ in the number of
empty blocks without flags. Such blocks neither give information about clients or servers nor can be
used to create additional connections. Hence, it can be sensible to define C2 and C3 to be equivalent
(see Section 7.2.2).

We already saw that representatives are made of blocks. When considering our method, we will
see that we associate a set of representatives to each node of the tree-decomposition. Therefore, we
introduce the following notation:

• nc is the maximum number of representatives for a node.
• nb is the maximum number of blocks of a representative.

7.1 A General Technique 101

7.1.2 Description of the Technique

After these necessary notations, we now describe our method where tree-decompositions of a network
can be used to solve variations of the network reliability problem. As already mentioned, we compute
the set of representatives for every node of the nice tree-decomposition using a bottom-up approach.
We will not only compute the representatives C, but also their associated probabilities Pr(C). For
this computation, we give algorithms for each of the four types of nodes that are used in a nice tree-
decomposition. Before looking at these algorithms, we consider a subroutine to repair the structure of
a representative. This subroutine is used in the algorithms for introduce- and join-nodes.

For a representative C1 of node i, Pr(C1) is the probability that Gi is in scenario f1. To compute
Pr(C1), we could simply compute Pr(f 1). We could do this for all representatives C of node i.
Nevertheless, Lemma 92 and 94 and similar easy statements for leaf and forget nodes, will make
evident the fact that we only need the already computed representatives and their probabilities of
the children of the node, insofar as they exist. This is a relevant point for applying the dynamic-
programming scheme, described in [8] or [10].

Starting at the leaves of the nice tree-decomposition, we compute for each node all representatives
and their probabilities that are possible for this node. In this computation, the representatives of the
children of a node play a decisive role. When ‘walking up’ the tree-decomposition to a node i the rep-
resentatives will be refined and split into other representatives representing the states of the vertices of
Xi and their connections. Later in Section 7.2.2 we will see that representatives are not only refined,
while walking up the tree, but at the same time, some representatives will ‘collapse’ into one equiva-
lence class, since they become equivalent. Once we have the probabilities of all representatives of all
nodes, especially of the root, we can easily solve problems by computing the requested probabilities.

7.1.3 Repairing Representatives

Before considering the particular algorithms, we describe a procedure that is a subroutine of the
introduce- and join-node-algorithm. It is used to repair the structure of a representative. The proce-
dure REPAIR receives as input a multiset of blocks. This multiset is not necessarily a representative,
as some blocks may contain common vertices in Xi. The REPAIR procedure ‘repairs’ or ‘corrects’
the multiset by unifying such blocks.

By introducing a new vertex or joining two representatives (see Section 7.1.4 for the algorithms),
a representative can contain blocks with nonempty intersection. Between two components Oa and Ob
corresponding to such blocks Ba and Bb exists a connection via a vertex of Ba ∩Bb. This means that
after introducing a new vertex or joining representatives, we have a larger component O = Oa ∪ Ob,
which has to be represented by only one block B. Having two blocks with a nonempty intersection
violates the proper structure of a representative. Hence, we merge or unify such nondisjoint blocks Ba
and Bb into one block B. Since blocks are sets of vertices, multiple appearances of a vertex are not
possible. The new componentO contains all the clients (i.e. vertices v ∈ L) of Oa andOb. We have to
add to B the number of L-flags of blocks Ba and the number of L-flags of Bb. On the other hand, we
must subtract the number of clients which belong to both blocks Ba and Bb, because they are counted
twice. The same applies to servers. Here is the code of the procedure to repair representative C:

REPAIR(C)

while ∃Ba, Bb ∈ C with a 6= b and Ba ∩Bb 6= ∅ do
B := Ba ∪Bb

102 7 Network Reliability: Graphs of Bounded Treewidth

add (#Lflags(Ba) + #Lflags(Bb) − |L ∩Ba ∩Bb|) L-flags to B;
add (#Sflags(Ba) + #Sflags(Bb) − |S ∩Ba ∩Bb|) S-flags to B;
C := {B} ∪ C \ {Ba, Bb}

endwhile

The while loop can be implemented to take at most O(n2
b) iterations, where nb is the maximum

number of blocks in one representative. One block can have at most k = O(maxi∈I |Xi|) elements
(k is the treewidth of the considered graph). Thus, the condition and the body of the while loop is
executable in O(k2) steps. The REPAIR algorithm needs altogether O(k2 · n2

b) time.

7.1.4 Computation of the Representatives and their Probability

In the following, we use i to denote a node of the tree T . Node imay have 0, 1 or 2 children, depending
on the type of i. These children are referred to as j or j1, j2. Accordingly, Ci denotes a representative
of i, which is computed using the representative(s) Cj (Cj1 , Cj2) of node(s) j (j1, j2), respectively.
We will have a look at each type for node i. When handling representatives, a lower index refers to the
node the representative belongs to, and an upper index is used to differentiate different representatives
belonging to the node considered.

Leaf Nodes

For leaves i of T we have a relatively simple algorithm, since |Xi| = 1 and leaves have no children.
Let v ∈ Xi. So, we have the following possibilities, either v is up or down, and we can have v ∈ L or
v 6∈ L and v ∈ S or v 6∈ S. We distinguish these cases:

• v is up: this results in a representative C1
i = { {v} }, with Pr(C1

i) = p(v). We add C1
i to the set

of representatives of node i.
• v is down: here we have another representative C2

i = { }, with Pr(C2
i) = 1−p(v). Again, we add

it to the set of representatives of node i.

If v is up and v ∈ L and/or v ∈ S, we must add one L- and/or S-flag to the block. An algorithm
performing the appropriate steps is very simple and would clearly need constant time per leaf. Since
|Vi| = 1, we have only two scenarios.

Introduce Nodes

Suppose i is an introduce node with child j, such that Xi = Xj ∪{v}. We use the representatives and
their probabilities of node j to compute the representatives and their probabilities of node i. For any
state of v (up or down, in L or not in L, in S or not in S), we compute the representatives and add
them to the set of representatives of node i. This is done by considering the following two cases for
each representative Cj of j:

• v is up: we add v to each blockB ∈ Cj which contains a neighbour of v, since there is a connection
between v and the component corresponding to B. If v is a client or a server, then we add an L-
or S-flag to block B. Now, we apply the algorithm in Section 7.1.3 to repair the structure of a
representative. The probability of this new representative C1

i is: Pr(C1
i) = p(v) · Pr(Cj).

• v is down: we do not make any changes to the representative Cj to obtain C2
i , since no new con-

nections can be made and no flags were added. However, we compute the probability: Pr(C2
i) =

(1− p(v)) · Pr(Cj).

7.1 A General Technique 103

The following code formalises this procedure:

Introduce-Node-Algorithm

for every representative Cj of node j do

/* v is up */
Ci := Cj
for each block B of Ci do

if B ∩N(v) 6= ∅
then B := B ∪ {v}

if v ∈ L then add one L-flag to B endif
if v ∈ S then add one S-flag to B endif

endif
endfor
REPAIR(Ci)
Pr(Ci) := Pr(Cj) · p(v)
add Ci to the set of representatives of node i

/* v is down */
Ci := Cj
Pr(Ci) := Pr(Cj) · (1− p(v))
add Ci to the set of representatives of node i

endfor

Lemma 92. Given all representatives and their probabilities of the child j of an introduce node i, the
Introduce-Node-Algorithm computes the representatives and their probabilities for node i
correctly.

Proof. Note that we can compute the representatives and their probabilities for node i by considering
every possible scenario for node i. However, recall that v is the only vertex in Vi \ Vj . So, each
scenario for node i can be obtained by taking a scenario for node j and extending it by specifying
whether v is up or down. All possible scenarios for node j are represented by the representatives of
j, whose probabilities are known. For that reason, it is sufficient to combine the representatives of j
with v to create the representatives of i. To do this we consider both v being up and down for each
representative Cj of j and make the appropriate modifications. In this way, we implicitly look at every
scenario which is possible for Gi.

It is not hard to see that the algorithm realises the description above. To demonstrate that this is
true, we consider the representative Cj of a scenario f of j, hence Cj = blocksj(f). Two cases: v is
up, or v is down, have to be considered:

Case 1 ‘v is up’: We extend f by f(v) = 1, i.e. for all w ∈ Vj : f(w) is unchanged. Since v may
have neighbours in blocks of Cj , we must add v to these blocks. There is a connection between v
and these neighbours and hence, between all vertices of the component represented by this block.
Furthermore, if v is a client or a server then the component containing v has one more client or server,
respectively. Thus, we have to add an L- or S-flag to such a block. That is exactly what happens in
the inner for-loop. After this we can have nonempty blocks with nonempty intersection, namely v.

104 7 Network Reliability: Graphs of Bounded Treewidth

We use the REPAIR algorithm to re-establish the structure of the representative. As a final result, we
obtain a new representative Ci, which we add to the set of representatives of i. The probability of Ci
is:

Pr(Ci) = Pr
Vi

(f) = Pr(Cj) · p(v)

Case 2 ‘v is down’: Similar to Case I, we extend scenario f by setting v as down. Hence, no new
connections between vertices of blocks or components can be made. Thus, we do not modify Cj to
get the new representative Ci. The probability of Ci is:

Pr(Ci) = Pr(Cj) · (1− p(v))

ut

We now analyse the running time of the algorithm. The outer for-loop of the Introduce-Node-
Algorithm is executed nc times, the inner for-loop nb times. Since we have to check only O(k) neigh-
bours, the condition B ∩ N(v) 6= ∅ can be tested in O(k2) steps. Hence, the algorithm needs time
O(nc · n2

b · k2).

Forget Nodes

Let node i be a forget node with child j, such that Xi = Xj \ {v}. Note that Vi = Vj , thus i and j
have the same scenarios. A representative Ci of i differs from the corresponding representative Cj of
j only because v does not appear in the blocks of Ci. Thus, we modify every representative Cj of j
in the following way to create a representative Ci of node i. We simply delete v from every block of
Cj to obtain Ci. As Ci and Cj represent the same scenarios, we have Pr(Ci) = Pr(Cj). All this can
be done by a rather simple Forget-Node-Algorithm. Such an algorithm would need time linear
in nc · k to create all new representatives. (Again, nc is the maximum number of representatives for a
node and k is the treewidth.)

Join Nodes

For a join node i with children j1 and j2 we have: Xi = Xj1 = Xj2 . Note that Vi = Vj1 ∪ Vj2 , and
that Vj1 ∩ Vj2 = Xi. Let up(C) denote the set of up vertices of Xi restricted to a representative C of
node i.

Definition 93. Let C be a representative.

up(C) := {v : v ∈ B for B ∈ C}

Two representatives C1 and C2 are compatible if up(C1) = up(C2).

Each scenario f of node i can be seen as the ‘merge’ of its restriction f1 to Vj1 and its restriction
f2 to Vj2 . Conversely, scenarios f1 of j1 and f2 of j2 can be merged, if and only if the same vertices
in Xi are up, i.e. the corresponding representatives must be compatible.

A representative Cj1 of j1 represents states and connections of vertices of Xj1 . The same is true
for a representative Cj2 of j2. Note that there is no connection between vertices of a representative, if
they belong to two different blocks.

Combining two compatible representatives means checking for new connections, since this trans-
lates to combining the corresponding subgraphs. If we have a representative Cj1 with two nonempty

7.1 A General Technique 105

blocks B1 and B2, this means there is no connection in Gj1 between vertices of the corresponding
components. Note that there is no connection between two blocks of a representative if they are dis-
joint. However, when combining this representative with a compatible representativeCj2 , it is possible
that there will be a connection between B1 and B2 via a connection of Cj2 . Therefore, to combine
two representatives, we unite all blocks with nonempty intersection. Specifically this is done by the
REPAIR algorithm given in Section 7.1.3.

Before demonstrating that the formula for computing Pr(Ci) is correct, we introduce the following
notations:

Pr
W

(f) =
∏

v∈W f=1

p(v) ·
∏

v∈W f=0

1− p(v); for a scenario f and W ⊆ V

Pr
Xi

(C) =
∏

v∈up(C)

p(v) ·
∏

v∈Xi\up(C)

1− p(v); for a set of blocks C

Note that PrXi(Ci) 6= 0 and PrW (f) 6= 0, because otherwise we would have a vertex v with p(v) = 0
being up, or we would have a vertex v with p(v) = 1 being down. According to our model, either of
this happens with probability 0.

Since the probabilities of the states of vertices of Xi are ‘contained’ in Pr(Cj1) and in Pr(Cj2)
as well, and since the probabilities of the vertices of Vi \ Xi, being in their appropriate state, are
independent, we compute

Pr(Ci) =
Pr(Cj1) · Pr(Cj2)

PrXi(Ci)

Again, we give pseudocode to formalise the complete method for join nodes:

Join-Node-Algorithm

for every representative Cj1 of node j1 do
for every representative Cj2 of node j2 do

if up(Cj1) = up(Cj2)
then Ci := Cj1 ∪ Cj2

REPAIR(Ci)

Pr(Ci) =
Pr(Cj1)·Pr(Cj2)

PrXi (Ci)

add Ci to the set of representatives of node i
endif

endfor
endfor

Lemma 94. Given all representatives and their probabilities of the children j1 and j2 of a join node
i, the Join-Node-Algorithm computes the representatives and their probabilities for node i
correctly.

Proof. We consider a representative Ci of node i. Ci represents a scenario f with Ci = blocksi(f).
Such a scenario f determines two scenarios f1 of Gj1 and f2 of Gj2 . These scenarios f1 and f2 are
represented by representatives Cj1 and Cj2 of node j1 or j2, respectively. Cj1 and Cj2 are compatible
and already computed. Hence, we combine them to get representative Ci. Thus, it is sufficient to

106 7 Network Reliability: Graphs of Bounded Treewidth

combine a representative of j1 with a compatible one of j2. By this means, we compute all possible
representatives of i.

The search for and processing of compatible representatives is done in the body of the two nested
for-loops. Two compatible representatives Cj1 and Cj2 represent a scenario f of Gi or its restrictions
f1 and f2 to Gj1 and Gj2 , respectively. They correspond to components of Gj1 and Gj2 . If we find
one block B1 in Cj1 and another block B2 in Cj2 with B1 ∩ B2 6= ∅, this means that there is a path
from a vertex of the component represented by B1 to a vertex of the component represented by B2,
via a vertex ofB1∩B2. In the new representative for i these two components are connected and hence
make up one component, with the number of servers and clients added together. Thus, we must join
both blocks B1 and B2 and modify the number of flags. This is done by using the REPAIR algorithm,
described in Section 7.1.3.

We look at representative Ci of node i which is the combination of representative Cj1 of j1 and
Cj2 of j2. Since PrXi(Ci) = PrXi(f) with Ci = blocksi(f), we have:

Pr(Ci) = Pr
Vi

(f) = Pr
Vj1

(f1) · Pr
Vj2

(f2) · Pr
Xi

(Ci)

=
1

PrXi(Ci)
· Pr
Vj1

(f1) · Pr
Xi

(Ci) · Pr
Vj2

(f2) · Pr
Xi

(Ci)

=
1

PrXi(Ci)
· Pr
Vi

(f1) · Pr
Vi

(f2)

=
1

PrXi(Ci)
· Pr(Cj1) · Pr(Cj2)

ut

The two nested for-loops have O(n2
c) iterations. At most k2 steps are required for the if-condition

andO(k2 ·n2
b) for the REPAIR algorithm. Altogether, we haveO(n2

c ·n2
b ·k2) steps (nc is the maximum

number of representatives for a node, nb is the maximum number of blocks of a representative and k
is the treewidth).

7.2 The Framework and Equivalence Classes

The network reliability problem [S ↔ t] (which is sometimes called S-terminal reliability problem)
can be expressed as the question for the probability that the surviving subgraph has a certain prop-
erty. In this example, the property would be the connection between all pairs of vertices of S. The
framework given in the previous section can handle more complex properties, and hence can answer
the appropriate question for the probability of such more complex properties. In this section, we take
a close look at properties that can be handled by the given framework. We also consider equivalence
relations between scenarios (i.e. their representatives). With the help of equivalence relations, it is
possible to speed up the entire method. Of course, such relations must meet certain requirements for
a given problem, which will also be discussed.

7.2.1 Properties of Solvable Network Reliability Problems

The results which can be obtained with our method, can be divided into two groups. The first group
does not use an equivalence relation between scenarios. Its consideration is a preparation for the
second group which uses equivalence relations between scenarios (see Section 7.2.2).

7.2 The Framework and Equivalence Classes 107

So far, a representativeC of a node i represents only one scenario f ofGi, and Pr(C) is the proba-
bility that this scenario occurs for Gi. C = blocksi(f) contains information about the connectivity of
vertices of S and L. More precisely, the blocks of C reflect the components and the flags the number
of vertices of S and L in each component of the graph G[V f=1

i]. Since we are dealing with network
reliability problems, the term ‘property of the graph’ should refer to a property concerning the com-
ponents and connectivity of vertices of S and L. Hence, any question which asks for the probability of
such a property can be answered. Clearly, only graphs can have such properties, but we will generalise
this to scenarios and representatives.

Definition 95. A scenario f for node i has property Y , if G[V f=1
i] has property Y . A representative

C of node i has property Y , if the scenario f with C = blocksi(f) has property Y .

Now, we know that representatives can have properties. If we want to use them for solving prob-
lems, it is also very important to be able to make the decision whether a (representative of a) scenario
has a certain property just by considering the information given by the blocks of the representative.
If this information is sufficient to determine that a representative has a property, we say that it shows
this property.

Definition 96. A representative C of node i shows property Y , if the information given by the blocks
of C is sufficient to determine that C has Y .

The following definition describes all the properties that can be handled or checked with our ap-
proach. Therefore, an equivalence between ‘showing’ and ‘having’ is necessary.

Definition 97. A possible property Y of Gi can be checked by using representatives of i, if for all
representatives C of i, it holds that:

C has property Y ⇐⇒ C shows property Y

Note that from Definition 96, it already follows that the implication from right to left always
holds. After having computed all representatives for node i and their associated probabilities, we can
use them to easily solve several problems for Gi.

Lemma 98. Let Y be a possible property of Gi that can be checked by using the representatives of i.
The probability that Gi has property Y equals the sum over the probabilities of the representatives of
node i which show the property Y .

Proof. This can easily be seen, since obviously we have to collect the scenarios with properties Y .
Such scenarios are represented by representatives which also have this property Y . Hence, we have to
add together the probabilities of representatives showing Y . ut

When considering representatives of the root r of the tree-decomposition, we can solve problems
for the entire graphG. Because there areO(2|Vi|) scenarios for graphGi, this results in a method with
exponential running time, since the number of representatives is a crucial point for the running time
of the algorithm. Thus, in the next section, we consider how to reduce the number of representatives.
However, the more representatives per node we ‘allow’, the more information we conserve during the
bottom-up process and hence, the more problems we can solve.

108 7 Network Reliability: Graphs of Bounded Treewidth

7.2.2 Reducing the Number of Representatives

In this section we will have a global look at the strategy. The correctness and restrictions follow in
subsequent sections.

By using an equivalence relation between scenarios it is possible to reduce the number of repre-
sentatives or, in other words: it is possible to reduce the number of objects that have to be considered
during the algorithms. For this, we join several scenarios to one equivalence class. We extend this
formalism to representatives and say that two representatives (of equivalence classes) are equivalent
if the corresponding scenarios (belonging to these classes) are equivalent. Equivalent scenarios, how-
ever, must be ‘similar’ with regard to the way they are processed by the algorithms. Additionally, it
is reasonable to consider the equivalence of scenarios of one node at a time. We have to take care
that the equivalence relation R we have chosen is suitable to solve our problem. Further, we have to
show that R is ‘preserved’ by the algorithms, i.e. if we have two equivalent scenarios of a node as
input to an algorithm, then the resulting scenarios are also equivalent. (This is described in detail in
Section 7.2.4.) Then, we use the algorithms given in Section 7.1.4 with the equivalence classes (or
better: with their representatives) instead of using the representatives of only one scenario. For that
reason, it is only reasonable if we define classes to be equivalent, which are treated in ‘the same way’
by the algorithms. We have to modify the algorithms slightly, since we have classes now and we have
to check after processing each node, if (the scenarios of) two classes became equivalent. If this is the
case, we join them into one equivalence class with new probability equal to the sum of the probabili-
ties of the joined representatives (of equivalence classes). The following list of steps summarises what
we have to do.

• Step 1: We have to define an equivalence relationR which is fine enough to solve our problem. On
the other hand it should be as coarse as possible to reduce the number of classes (i.e. the number
of representatives) and hence the running time as much as possible. In Section 7.2.3, we give more
details.

• Step 2: We must modify our algorithms to handle (representatives of) classes now and to maintain
them, i.e. it is necessary to check for equivalent representatives/classes after processing each node.
If we find such two classes among all classes of a node, we keep only one of them with accumulated
probability. For doing this, we add as a last step the following code to the algorithms:

while there exist representatives Ca, Cb of i with a 6= b and Ca ≡ Cb do
Pr(Ca) := Pr(Ca) + Pr(Cb)
delete Cb for node i

endwhile

This code-fragment can be implemented to take O(n2
c) iterations. We assume that the check for

equivalence of two representatives can be performed in O(n2
b) time. Thus, we need O(n2

c · n2
b)

steps, altogether.
• Step 3: We have to show that it is correct to use the class representatives of R instead of scenario

representatives, i.e. we have to show that the algorithms preserve R. This is considered in detail in
Section 7.2.4.

• Step 4: We analyse the running time by estimating the maximum number of equivalence classes.
The maximum number of blocks is therefore very important.

7.2 The Framework and Equivalence Classes 109

A representative C is a multiset of blocks. When considering equivalence relations with an equiv-
alence class representative C, we use [C] to denote the equivalence class represented by C, i.e. [C] is
a set containing all scenarios represented by C.

7.2.3 Information Content of Equivalence Classes

In Section 7.2.1, we introduced some notations for scenarios. Here, we give analogous notations for
equivalence classes. With these, we want to express the information ‘contained’ in equivalence classes.
Furthermore, we clarify what it means for a relation to be fine enough, and we give a lemma that tells
us what we can do with relations that are fine enough.

When using an equivalence relation, we define scenarios to be equivalent which may not be equal.
Thus, by doing this, we lose the information that these scenarios were different and also why they
were different. However, we reduce the number of class representatives, as intended. Clearly, using no
equivalence relation provides as much information as possible with this method. However, for solving
the S-terminal reliability problem a rather coarse equivalence relation is sufficient. Hence, we are
faced with a trade-off between information content and efficiency. In analogy to the Definitions 95, 96
and 97, we give the following definition for equivalence classes.

Definition 99. An equivalence class [C] of scenarios for node i has property Y , if each scenario
belonging to [C] has property Y . An equivalence class [C] of node i shows property Y , if its repre-
sentative C shows Y .

Definition 100. An equivalence relation R is fine enough for property Y , if for all nodes i of the
tree-decomposition the following holds: For all equivalence classes [C] of node i, it holds that:

(∀f ∈ [C] : f has property Y) ∨ (∀f ∈ [C] : f does not have property Y)

That means that R is fine enough for Y , iff there is no equivalence class which contains a scenario
that has property Y and another scenario which does not have property Y . In the same flavour as
Lemma 98, the next one tells us that under certain conditions, we can use equivalence classes to solve
problems for a graph G, after computing all equivalence classes of all nodes until we reached the root
r.

Lemma 101. LetR be an equivalence relation which is fine enough for property Y that can be checked
using representatives. The probability that Gi has property Y equals the sum over the probabilities of
the equivalence classes of node i which show this property Y .

Proof. This can be proven very similar to the proof of Lemma 98. Again, we have to add together the
probabilities of the scenarios with property Y . These scenarios are collected in equivalence classes
which also have and show this property Y , because Y can be checked using representatives. Since R
is fine enough, it is sufficient to sum up the probabilities of these equivalence classes. ut

7.2.4 Conditions for Using Equivalence Classes

In earlier sections, we discussed when an equivalence relation is fine enough. In this section we will
see under which conditions we can use (the representatives of) the equivalence classes during the
execution of the bottom-up computation in the tree-decomposition by means of the leaf-, introduce-,
forget-, and join-node algorithms.

110 7 Network Reliability: Graphs of Bounded Treewidth

The choice of the equivalence relation R cannot be made arbitrarily. As mentioned in Step 1, R
has to be fine enough to provide enough information to solve the problem. Furthermore, R must have
some structural properties, i.e. R must be ‘respected’ or ‘preserved’ by the algorithms. This targets to
the property that if two scenarios are equivalent before being processed by one of the algorithms for
the four types of nodes, they are also equivalent after this processing. To capture exactly the notion of
‘preserving an equivalence relation’, some definitions are required.

Leaf nodes need no consideration, since we have no class representatives as input to the algorithm
for leaf nodes. For forget nodes, the situation is rather simple.

Definition 102. Let i be a forget node with child j. Let Cx
j be a representative of j which results, after

processed by the Forget-Node-Algorithm, inCx
i of node i. The Forget-Node-Algorithm

preserves the equivalence relation R if the following holds:

∀C1
j , C

2
j : (C1

j , C
2
j) ∈ R =⇒ (C1

i , C
2
i) ∈ R

Now, we look at introduce nodes. The introduce-node-algorithm produces two output-represen-
tatives for each input-representative, namely one for the introduced vertex v being up and one for v
being down.

Definition 103. Let i be an introduce node with child j with Xi = Xj ∪ {v}. Let representative
Cxj of node j be the input for the Introduce-Node-Algorithm, which gives as output Cx,up

i

and Cx,downi of node i, for v is up and down, respectively. The Introduce-Node-Algorithm
preserves the equivalence relation R if the following holds:

∀C1
j , C

2
j : (C1

j , C
2
j) ∈ R =⇒ (C1,up

i , C2,up
i) ∈ R ∧ (C1,down

i , C2,down
i) ∈ R

For join nodes, we have to consider representatives of two children.

Definition 104. Let i be a join node with children j1 and j2. Furthermore, let Cxj1 and Cyj2 be repre-
sentatives of node j1 and j2, respectively. Let Cx,yi be the result of the Join-Node-Algorithm
for processing Cxj1 and Cyj2 . The Join-Node-Algorithm preserves the equivalence relation R if
the following holds:

∀C1
j1 , C

2
j1 , C

1
j2 , C

2
j2 :

(C1
j1 , C

2
j1) ∈ R ∧ (C1

j2 , C
2
j2) ∈ R ∧ up(C1

j1) = up(C2
j1) = up(C1

j2) = up(C2
j2)

=⇒
(C1,1

i , C1,2
i) ∈ R ∧ (C1,2

i , C2,1
i) ∈ R ∧ (C2,1

i , C2,2
i) ∈ R

If we use only (the representatives of) the equivalence classes in the algorithms, we can process all
scenarios represented by such equivalence classes by only one execution of an algorithm. The results
will be, again, equivalence classes. Using an equivalence relation which is preserved by the algorithms
is therefore important. That means that we do not have to worry whether an algorithm ‘violates’ R by
creating a result that actually is not an equivalence class of R.

Lemma 105. When using equivalence classes of R as input for the Forget-, Introduce- or
Join-Node-Algorithm, then the result will also be equivalence classes of R, if R is preserved
by the respective algorithm.

7.2 The Framework and Equivalence Classes 111

Proof. It follows directly from the corresponding definitions above that all scenarios represented by
a resulting ‘equivalence class’ are indeed equivalent. The algorithm-fragment given in Step 2 in Sec-
tion 7.2.2 ensures that all equivalent scenarios are pooled together in one equivalence class. ut

From the previous definition, we can see that it is important that equivalent scenarios are com-
patible. Actually, this is not sufficient for being able to apply our framework. The idea is to handle
equivalent scenarios with only one computation. The algorithms modify only the nonempty blocks
and two equivalent scenarios have to be modified in the same way. Hence, for applying the framework
equivalent scenarios must have the same set of nonempty blocks. However, there are reasonable excep-
tions to this, which will not be considered here in general, to keep the framework and its presentation
less technical. The next definition summarises the two conditions discussed above.

Definition 106. An equivalence relation R is called proper if

• for all equivalence classes C of R, it holds that: for all scenarios f, f ′ ∈ C, the sets of nonempty
blocks of f and f ′, respectively, are equal and

• R is preserved by the Forget-, Introduce- and Join-node-algorithms.

7.2.5 The Correctness of the Algorithm for Classes

In this section, we look at the correctness of the counterparts of the algorithms given in Section 7.1.4.
As described earlier, only a few modifications are needed to get algorithms for (representatives of)
equivalence classes rather than (representatives of) scenarios. We can take the algorithms described
in Section 7.1.4 and extend them with the while loop given in Step 2 in Section 7.2.2. While the
algorithms are straightforward, the proof of their correctness is slightly more complicated.

We use the same terminology as in Section 7.1.4: i denotes a node of the tree T . Node i may have
0, 1 or 2 children, depending on the type of i. These children are referred to as j or j1, j2. Ci denotes a
representative of a class of i, which is computed using the representative(s) of class(es) Cj (Cj1 , Cj2)
of node(s) j (j1, j2), respectively. We will have a look at each type for node i.

When handling representatives, a lower index refers to the node the representative belongs to, and
an upper index is used to differentiate different representatives belonging to the node considered. In
general, the algorithms given in Section 7.1.4 can be used here as well. However, they have to be
extended by the code-fragment of Step 2 in Section 7.2.2 to check for new equivalences. It is easy to
see, that each of these ‘new’ algorithms can be performed in time O(n2

c · n2
b · k2).

Leaf Nodes

As seen before, for leaves i of T , the algorithm is rather simple, since |Xi| = 1. It is very similar to
the description for leaves given in Section 7.1.4, because we have two scenarios for a leaf. For proper
relations, these scenarios will never be in one equivalence class at a leaf, since their sets of nonempty
blocks are not equal. Hence, we have two equivalence classes for a leaf. The remaining argumentation
is very similar to the part in Section 7.1.4 concerning leaf nodes.

Introduce Nodes

Suppose i is an introduce node with child j, such thatXi = Xj∪{v}. We use the representatives of the
classes and their probabilities of node j to compute the representatives and their probabilities of node
i. For any state of v (up or down, in L or not in L, in S or not in S) we compute the representatives
and add them to the set of representatives of node i. This is done in an analogous way as described in
Section 7.1.4.

112 7 Network Reliability: Graphs of Bounded Treewidth

Lemma 107. Given the representatives of all equivalence classes of a proper equivalence relation
and their probabilities of the child j of an introduce node i, the Introduce-Node-Algorithm
computes (the representatives of) all equivalence classes and their probabilities for node i correctly.

Proof. We can compute the representatives and their probabilities for node i by considering every
possible scenario for node i and creating equivalence classes according to the equivalence relation.

However, recall that v is the only vertex in Vi \ Vj . So, each scenario for node i can be obtained
by taking a scenario for node j and extending it by specifying whether v is up or down. All pos-
sible scenarios for node j are represented by the representatives of equivalence classes of j, whose
probabilities are known. Since the considered equivalence relation is proper, two scenarios which are
equivalent at node j will result in equivalent scenarios of node i (for v being fixed to up or down). For
that reason, it is sufficient to combine the representatives of classes of j with v to create the represen-
tatives of classes of i. To do this we consider both v being up and down for each class representative
Cj of j and make the appropriate modifications. By doing this, we implicitly look at every scenario
which is possible for Gi. For the correctness, we consider for a class representative Cj of j two cases:
v is up or v is down:

Case 1 ‘v is up’: For all f ∈ [Cj], we extend f by f(v) = 1, i.e. for all w ∈ Vj : f(w) is unchanged.
The argumentation is very similar to the proof of Lemma 92. We have to use only one more argument.
Since the relation is proper, all scenarios f ∈ [Cj] have the same set of nonempty blocks. And hence,
all these scenarios would be handled in the same way when treated individually. That is why we can
handle them by a single pass of the outer loop of the algorithm when using the representative Cj . The
probability of the new class with representative Ci is:

Pr(Ci) =
∑

f∈[Ci]

Pr(f) =
∑

f∈[Cj]

Pr(f) · p(v) = Pr(Cj) · p(v)

Here, [Ci] contains scenarios, which are scenarios belonging to [Cj] extended by f(v) = 1.

Case 2 ‘v is down’: Similar to Case I, we extend all scenarios f by ‘v is down’. Hence, no new
connections between vertices of blocks or components can be made. Thus, we do not modify Cj to
get the new class representative Ci. The probability of Ci is:

Pr(Ci) = Pr(Cj) · (1− p(v))

ut

Forget Nodes

For a forget node i with child j, let Xi = Xj \ {v}. Note that Vi = Vj , thus i and j have the same
scenarios. However, they might have different representatives. Let Cj and Ci be two representatives
of the same scenario of node j and i, respectively. Because v does not appear in the blocks of Ci, Cj
and Ci are different or equal, depending on the state of vertex v (up or down). Each scenario belongs
to an equivalence class. Thus, we modify every class representative Cj of j in the following way to
create a class representative Ci of node i. We simply delete v from every block of Cj containing v to
obtain Ci. For a proper equivalence relation, all scenarios belonging to an equivalence class [Cj] have
the same set of nonempty blocks. Hence, by deleting v from the blocks of Cj , we implicitly delete v
from all scenarios represented by Cj . This results in the new equivalence class Ci for node i. Because
Ci and Cj represent the same scenarios, we have Pr(Ci) = Pr(Cj).

7.2 The Framework and Equivalence Classes 113

Join Nodes

For join nodes i with children j1 and j2 we have: Xi = Xj1 = Xj2 . Note that Vi = Vj1 ∪ Vj2 and
Vj1 ∩ Vj2 = Xi.

We proceed as described in Section 7.1.4. We combine compatible class representatives of nodes
j1 and j2. After combining, we repair them with the procedure given in Section 7.1.3. By doing this,
we get equivalence classes of node i.

Lemma 108. Given all the representatives of equivalence classes of the children j1 and j2 of a join
node i and the probabilities of these equivalence classes with a proper underlying equivalence rela-
tion, the Join-Node-Algorithm computes the representatives and the probabilities of classes of
node i correctly.

Proof. We consider an equivalence class representativeCi of node i. By restricting a scenario f ∈ [Ci]
to Vj1 and Vj2 , respectively, it determines two scenarios f1 of Gj1 and f2 of Gj2 . Those two scenarios
f1 and f2 belong to equivalence classes Cj1 and Cj2 of nodes j1 and j2, respectively. The represen-
tatives of these classes and their probabilities are already computed in our bottom-up approach. Note
that these representatives are compatible. Furthermore, we have due to equivalence (and hence com-
patibility) that any scenario in [Cj1] combined with any scenario in [Cj2] results in a scenario in [Ci].
This yields the Cartesian product of [Cj1] and [Cj2] with |[Cj1]| · |[Cj2]| combinations. Fortunately,
since any such combination results in a scenario in [Ci], we can compute all combinations by a single
pass of the algorithm by using the representatives of [Cj1] and [Cj2]. Hence, simply combining the
representatives Cj1 and Cj2 is sufficient to handle all scenarios represented by them and to create (a
subset of) [Ci].

To create the entire set of scenarios [Ci], we have to process all equivalence classes emerging from
restrictions of scenarios of [Ci] to Vj1 and Vj2 . However, the same argumentation as above holds for
these as well, and the added code-fragment of Step 2 in Section 7.2.2 will check for equivalent classes
and produce the final class [Ci].

Let Cj1 and Cj2 be two compatible equivalence class representatives of node j1 and j2, respec-
tively. [Cj1] and [Cj2] are combined to get class [Ci] of node i. Then we have for the probability of Ci
of node i:

Pr(Ci) =
∑

f∈[Ci]

Pr
Vi

(f)

This product can be split into factors with regard to the children of node i. However, the set Xi is
contained in both sets Vj1 and Vj2 . Hence, this product would contain a factor for the state probabilities
of vertices of Xi twice, which we correct by an appropriate division:

Pr(Ci) =
∑

f∈[Ci]

Pr
Vj1

(f) · Pr
Vj2

(f) · 1

PrXi(f)

Since the latter factor is constant for all f ∈ [Ci] for a proper equivalence relation, we have:

Pr(Ci) =
1

PrXi(f)
·
∑

f∈[Ci]

Pr
Vj1

(f) · Pr
Vj2

(f)

Because the equivalence class [Ci] contains all scenarios, which result from the Cartesian product of
compatible classes [Cj1] and [Cj2] of j1 and j2, respectively, we have:

114 7 Network Reliability: Graphs of Bounded Treewidth

∑

f∈[Ci]

Pr
Vj1

(f) · Pr
Vj2

(f) =
∑

f∈[Ci]

Pr
Vj1

(f) ·
∑

f∈[Ci]

Pr
Vj2

(f) =
∑

f∈[Cj1]

Pr
Vj1

(f) ·
∑

f∈[Cj2]

Pr
Vj2

(f)

And hence, this results in:

Pr(Ci) =
1

PrXi(f)
·
∑

f∈[Cj1]

Pr
Vj1

(f) ·
∑

f∈[Cj2]

Pr
Vj2

(f)

=
1

PrXi(f)
· Pr(Cj1) · Pr(Cj2)

After computing the new classes of node i, which contain scenarios corresponding to the Cartesian
product of scenarios of compatible classes of j1 and j2, we have to check for new equivalences. The
correctness of the procedure we use for this is easy to see. ut

We are now ready to bring everything together.

Theorem 109. Let R be a proper equivalence relation of scenarios that is fine enough for property Y
which can be checked using representatives. Then we can use our framework to compute the proba-
bility that Gi has property Y .

Proof. The correctness of the computation of the representatives and their probabilities follows from
the correctness of the particular algorithms for the four types of nodes. Lemma 107 and 108 show this
for introduce- and join-nodes. The situation is trivial for leaf- and forget-nodes. The theorem follows
now from Lemma 101 and 105. ut

The running time depends on the relation R. For a fixed size of Xi, if R has a finite number of
equivalence classes, then the algorithm is linear time. If the number of equivalence classes is bounded
by a polynomial in the number of vertices of G, then the algorithm uses polynomial time. For further
discussion, see Section 7.5.

7.3 Problems that Fit into this Framework

In this section, we look at examples of solvable problems which yield different running times. Later
in this section, we look at relations (and the resulting running times) that meet all conditions de-
scribed in the previous section, because they are generated by specific operations or because they are
a combination of relations.

7.3.1 Solvable Problems

It is not possible to give an exhaustive list of problems that can be handled with this approach, because
many equivalence relations can be used, and very often, many different questions can be handled with
a single relation. Note that we assume in this entire chapter that a tree-decomposition of bounded
width of the graph is given. Theorem 109 gives information about solvable problems. We simply can
say that every problem that asks for the probability of a property Y of G can be solved, if Y can
be checked using classes. Therefore we should find an equivalence relation R as coarse as possible,
but still fine enough for Y . Furthermore, to apply the framework described in this paper, R must be
preserved by the algorithms. In the following, we list some example properties.

7.3 Problems that Fit into this Framework 115

To obtain relations that allow algorithms with linear running time, we can restrict the maximum
number of blocks and the number of flags per block to be constant. With such relations we can answer
questions like: ‘What is the probability that all clients are connected to at least one server?’ (problem
[L ↔≥ 1S]) or ‘What is the probability that all servers are useful, i.e. have a client connected to
them?’ ([S ↔≥ 1L]). We can also use only one kind of special vertices, e.g. only servers. With such a
relation we are able to give an answer to ‘What is the probability that all servers are connected?’ ([S ↔
t]), which is the classical S-terminal reliability problem. With additional ideas and modifications, it
is also possible to answer the following question in linear time: ‘What is the expected number of
components that contain at least one vertex of S (of L; of S and L)?’ ([Ec ≥ 1S], [Ec ≥ 1L] or
[Ec ≥ 1(S ∧ L)], respectively)

A possible assumption would be to consider the number of servers nS to be small. We can use a
different S-flag for each server. In this case, a relation which does not conflate or fuse empty blocks
with S-flags, but only with L-flags, can be utilised. Further, each block can have multiple flags of each
type. Unfortunately, this relation leads to a maximum number of classes bounded exponentially in nS .
With this relation we can answer the question with which probability certain servers are connected,
and with what probability server x has at least y clients connected to it (x, y are integers). We can also
determine the ‘most useless’ server, i.e. the server with smallest expected number of clients connected
to it. Of course, this relation enables us to compute the expected number of components with at least
one server.

If we use relations that bound nb by a constant, and the number of flags per block is only bounded
by nL and nS , then our algorithm will run in a time polynomial in nL and nS . Such relations enable
properties like: at least x clients are not connected to a server, or at most y server are not connected
to a client, as well as at least x clients are connected to at least one server while at least y servers are
connected to at least one client.

7.3.2 Generating Relations

The relation which is the finest we can have, is the relation R̂ which assigns to each scenario its own
equivalence class. This relation is clearly preserved by the algorithms. We show below, that if we
modify R̂ by applying a sequence of specific operations to get a relation R, then R is preserved by the
algorithms as well. The goal is to ‘construct’ relations which are ‘automatically’ preserved.

As a reminder, a representative is a multiset of blocks, not necessarily representing a scenario. With
an operation h : C → C (where C is the set of multisets of blocks), which takes the representation,
i.e. the set of blocks of an equivalence class as input, we can define a new equivalence relation Rh.
We give a list of a few basic operations, with which many useful relations can be created. Therefore,
we can start with the finest relation R̂ which equivalence classes represent exactly one scenario. The
general form of an operation is: hblock−selaction , whereby block-sel selects the blocks for the action, which
is one of the following:

• ‘del’: We delete all blocks that are selected by block-sel.
• ‘dmulS’: Here, we drop multiple S-flags and keep only one. That means each block selected by

block-sel is replaced by the same block at which we delete multiple S-flags and we keep only one
of them.

• ‘dmulL’: The same as dmulS, but here we drop multiple L-flags.
• ‘con’: We conflate all selected blocks and concatenate their lists of flags. That means all blocks

selected by block-sel are united to one block with as many S- and L- flags as those of the united
blocks together.

116 7 Network Reliability: Graphs of Bounded Treewidth

As already mentioned, blocks are selected by block-sel, which is a sequence of the following
symbols:

• ‘= ∅’ or ‘6= ∅’, which determines that either empty blocks or nonempty blocks are selected,
respectively.

• ‘S’ or ‘6S’, which determines that either blocks that must have at least one S-flag or blocks that
must not have any S-flag are selected.

• ‘L’ or ‘6L’, which is the same as above for L-flags.

We give the set of those block-selectors that are considered in this section.

BSel = {6=∅, 6=∅ 6S 6L, 6=∅S 6L, 6=∅ 6SL, 6=∅SL,=∅,=∅ 6S 6L,=∅S 6L,=∅ 6SL,=∅SL}

For the sake of clarity, we will look at some examples:

• h=∅6S 6L
del (C) = the multiset of blocks consisting of exactly all blocks of C but without empty blocks

without any flag:

h=∅6S 6L
del ({u}, {v, w}LLL, { }SSSLL , { }SS , { }S , { })
= { {u}, {v, w}LLL, { }SSSLL , { }SS , { }S }

• h=∅SL
dmulS(C) = the multiset of blocks consisting of exactly all blocks of C but for each empty block

with at least one S-flag and at least one L-flag, we drop (or delete) all but one S-flag:

h=∅SL
dmulS ({u}, {v, w}LLL, { }SSSLL , { }SS , { }S , { })
= { {u}, {v, w}LLL, { }SLL, { }SS , { }S , { } }

• h 6=∅6SLdmulL(C) = the multiset of blocks consisting of exactly all blocks of C but each nonempty block
{...}L...L with at least one L-flag and no S-flag is replaced by the same block {...}L with only one
L-flag:

h 6=∅6SLdmulL ({u}, {v, w}LLL, { }SSSLL , { }SS , { }S , { })
= { {u}, {v, w}L, { }SSSLL , { }SS , { }S , { } }

• h=∅S 6L
con (C) = the multiset of blocks consisting of exactly all blocks of C but all empty blocks with

at least one S-flag and no L-flag are replaced by one empty block with as many S-flags as those
of the replaced blocks together:

h=∅S 6L
con ({u}, {v, w}LLL, { }SSSLL , { }SS , { }S , { })
= { {u}, {v, w}LLL, { }SSSLL , { }SSS , { } }

Compiling all operations which we will consider, we get the setH:

H = {h=∅6S 6L
del , h=∅S 6L

del , h=∅6SL
del , h=∅SL

del , h=∅S 6L
dmulS , h

=∅SL
dmulS , h

6=∅S 6L
dmulS , h

6=∅SL
dmulS ,

h=∅6SL
dmulL, h

=∅SL
dmulL, h

6=∅6SL
dmulL, h

6=∅SL
dmulL, h

=∅S 6L
con , h=∅6SL

con , h=∅SL
con }

Note that in this list the only operations mapping nonempty sets are operations that drop multiple
flags, i.e. that do not change any vertex of any block.

So far, h is an operation which takes a multiset of blocks as input and gives a multiset of blocks as
output. In the following definition, we extend the applicability of h to an equivalence relation R. Note
that the relation R̂ is the finest relation possible. It assigns to each scenario its own equivalence class.

7.3 Problems that Fit into this Framework 117

Definition 110. Let R0 = {R̂} and h ∈ H. For R ∈ Ri we define a new equivalence relation h(R)
in the following way: Let C1 and C2 be two representatives of two equivalence classes [C1] and [C2]
of R, respectively. Then

(C1, C2) ∈ h(R)⇐⇒ h(C1) = h(C2)

Furthermore, we have:

Ri+1 = {R′|R′ = h(R) for R ∈ Ri and h ∈ H}

and

R =
∞⋃

i=0

Ri

If (C1, C2) ∈ h(R), it might be convenient to choose the representative C of the new equivalence
class [C] with C1, C2 ∈ [C] as follows: C = h(C1) = h(C2). However, the algorithms have to be
modified to maintain this. As an example, if the Forget-Node-Algorithm creates a new empty
block without any flags and if we use the operation h=∅6S 6L

del to define the new relation, then we have to
modify the Forget-Node-Algorithm to delete the new empty block.

Thus, applying an operation to the multiset of blocks of the representation of an equivalence class
immediately results in the multiset of blocks of an equivalence class of the new relation. Now, the idea
is to consider operations h ∈ H and prove that h(R) is preserved by the algorithms if h(R) is obtained
by applying a sequence of operations of H to R̂, i.e. we will show that each R ∈ R is preserved by
the algorithms. To prove this, we require some lemmas.

In the upcoming proofs, we use the following terms: For A a multiset of blocks, blocksα(A) is
the multiset of all blocks of A selected by α ∈ BSel. We call these sets categories. Here are a few
examples:

• blocks 6=∅(A) is the set of all nonempty blocks of A.
• blocks 6=∅6SL(A) is the set of all nonempty blocks of A with at least one L-flag and no S-flags.
• blocks=∅6S 6L(A) is the multiset of all empty blocks of A with no flags.

Lemma 111. Let h be a sequence of operations ofH, A be a multiset of blocks, and α ∈ BSel.

blocksα(h(A)) = h(blocksα(A))

Proof. This is easy to see for a single operation h ∈ H. By applying this iteratively for each operation
in a sequence h, we obtain the lemma. ut

As a reminder, the symbol ‘∪’ between multisets denotes the multiunion. (See the paragraph about
blocks in Section 7.1.1 for more details.)

Lemma 112. Let A be a multiset of blocks and let h be a sequence of operations ofH.

h(A) = h(blocks 6=∅6S 6L(A)) ∪ h(blocks=∅6S 6L(A))

∪ h(blocks 6=∅S 6L(A)) ∪ h(blocks=∅S 6L(A))

∪ h(blocks 6=∅6SL(A)) ∪ h(blocks=∅6SL(A))

∪ h(blocks 6=∅SL(A)) ∪ h(blocks=∅SL(A))

118 7 Network Reliability: Graphs of Bounded Treewidth

Proof. The multiset A of blocks can be partitioned into:

A = blocks 6=∅6S 6L(A) ∪ blocks=∅6S 6L(A)

∪ blocks 6=∅S 6L(A) ∪ blocks=∅S 6L(A)

∪ blocks 6=∅6SL(A) ∪ blocks=∅6SL(A)

∪ blocks 6=∅SL(A) ∪ blocks=∅SL(A)

It follows from the definition of the categories blocksα(A) above (for α ∈ BSel \ {6= ∅,= ∅}) that
this is indeed a partition. Each single operation handles only the blocks of one category and leaves
the other categories untouched. Therefore, it is easy to see that the claim is true for h being a single
operation. Now, the result follows from Lemma 111. ut

Lemma 113. Let A and B be multisets of blocks and let h be a sequence of operations ofH.

h(A) = h(B)⇐⇒

∀α ∈ BSel : h(blocksα(A)) = h(blocksα(B))

Proof. The ‘⇐’ direction follows from Lemma 112. To see the ‘⇒’ direction, let D ∈ h(A).
Clearly, D ∈ h(B) and there is an α ∈ BSel \ {6= ∅,= ∅}, with D ∈ blocksα(h(A)). Since
h(A) = h(B), we have D ∈ blocksα(h(B)). Because this is true for all D ∈ blocksα(h(A)), we
have: blocksα(h(A)) ⊆ blocksα(h(B)), and by symmetry: blocksα(h(A)) = blocksα(h(B)). By
Lemma 111, we conclude: h(blocksα(A)) = h(blocksα(B)). Since D was chosen arbitrarily, α was
chosen arbitrarily as well, and we see that the last equation is true for all α ∈ BSel. ut

Lemma 114. Let A and B be multisets of blocks. Furthermore, let h ∈ H \ {h=∅S 6L
con , h=∅6SL

con , h=∅SL
con }.

Then it holds that:
h(A ∪B) = h(A) ∪ h(B)

Proof. This is easy to see, because such an h modifies a multiset of blocks locally, namely block by
block, which means that each block is exchanged by another one of the same category or deleted. ut

It is not possible to give an easy-to-prove statement as in Lemma 114 if at least one of h=∅S 6L
con ,

h=∅6SL
con or h=∅SL

con is involved. In this case, it is possible that several blocks are exchanged by one other
block. We will have a closer look at a sequence containing h=∅S 6L

con . Operation h=∅S 6L
con only affects

empty blocks with at least one S-flag and no L-flags. As we have seen above, there is no interference
between different categories. Thus, in the next lemma, we restrict ourself to this category and only to
operations which have an effect to this category.

Lemma 115. Let A,B,C,D be multisets of empty blocks with at least one S-flag and no L-flags. For
h a sequence of operations of {h=∅S 6L

del , h=∅S 6L
dmulS , h

=∅S 6L
con }, we have:

h(A) = h(B) ∧ h(C) = h(D) =⇒ h(A ∪ C) = h(B ∪D)

Proof. We consider a number of cases:

Case 1 ‘h=∅S 6L
con is not in the sequence h’: Then the result follows directly from Lemma 114.

Case 2 ‘there is any h=∅S 6L
del in the sequence h’: Then we have the situation that there are no empty

blocks with at least one S-flag and no L-flags anymore, and the result trivially holds.

7.3 Problems that Fit into this Framework 119

Hence, we suppose in the following cases that h=∅S 6L
con ∈ h and h=∅S 6L

del 6∈ h.

Case 3 ‘h(X) = ...h=∅S 6L
dmulS(...h=∅S 6L

con (...(X)...)...)..., i.e. first we apply h=∅S 6L
con and then h=∅S 6L

dmulS’:
Sequence hwill turn all empty blocks with at least one S-flag and no L-flags into a single empty block
with a single S-flag. Then we know that h(A) = h(B) ∈ { { }S , ∅ } and h(C) = h(D) ∈ { { }S , ∅ }.
(We have h(A) = h(B) = ∅ iff A and B do not contain any empty block with at least one S-flag
and no L-flags. The same also holds for sets C and D.) If A ∪ C contains an empty block with only
S-flags, then B ∪ D as well, and we have: h(A ∪ C) = h(B ∪ D) = {{ }S} otherwise we have:
h(A ∪ C) = h(B ∪D) = ∅.

Case 4 ‘h(X) = ...h=∅S 6L
con (...h=∅S 6L

dmulS(...(X)...)...)..., i.e. first we apply h=∅S 6L
dmulS and then h=∅S 6L

con ’: The
result of h(X) in this case is {{ }S...S}, where the number of S-flags equals the number of empty
blocks in X with at least one S-flag and no L-flags. Let a be the number of empty blocks of A
with at least one S-flag and no L-flags. We define b, c, d in the same way. Then we trivially have:
a = b ∧ c = d =⇒ a+ c = b+ d, which implies h(A ∪ C) = h(B ∪D).

Case 5 ‘only h=∅S 6L
con and no h=∅S 6L

dmulS is applied’: Let a be the total number of all S-flags of all empty
blocks of A with at least one S-flag and no L-flags. We define b, c, d in the same way. Since h(A) is
exactly one empty block with a S-flags and no L-flags, we have: a = b ∧ c = d =⇒ a + c = b + d.
Hence h(A ∪ C) = h(B ∪D).

Case 6 ‘h(X) = ...h=∅S 6L
con (...h=∅S 6L

dmulS(...h=∅S 6L
con (...(X)...)...)...)..., i.e. first we apply h=∅S 6L

con , then
h=∅S 6L
dmulS and then h=∅S 6L

con again’: Here the outermost h=∅S 6L
con has no effect and hence we have already

considered this case above.

Case 7 ‘h(X) = ...h=∅S 6L
dmulS(...h=∅S 6L

con (...h=∅S 6L
dmulS(...(X)...)...)...)..., i.e. first we apply h=∅S 6L

dmulS , then
h=∅S 6L
con and then h=∅S 6L

dmulS again’: In this case the innermost h=∅S 6L
dmulS has no effect and thus is already

handled above. ut

We can easily see that lemmas similar to the previous one are true, when considering blocks with
at least one L-flag and no S-flags (or for blocks with at least one S-flag and at least one L-flag). The
proofs are very similar and hence we omit them. We generalise the previous lemma which is the last
intermediate step.

Lemma 116. Let A,B,C,D be multisets of blocks. For h a sequence of operations ofH, we have:

h(A) = h(B) ∧ h(C) = h(D) =⇒ h(A ∪ C) = h(B ∪D)

Proof. As discussed above, operations for different categories of blocks do not affect each other, and
hence we can consider each category separately. Thus, the result follows easily from Lemma 112, 113,
115 and the variants of Lemma 115, discussed above. ut

Lemma 117. Let R be an equivalence relation with R ∈ R. R is preserved by the Introduce-,
Forget- and Join-Node-Algorithms.

Proof. Let h be the sequence of operations with h(R̂) = R. In many equations below, we make use
of Lemmas 115 and 116. We consider each algorithm separately:

120 7 Network Reliability: Graphs of Bounded Treewidth

• The Forget-Node-Algorithm:
Node i is a forget node with child j. Let C1

j , C2
j be representatives of node j and let C1

i , C2
i be

representatives of node i which are the results of the Forget-Node-Algorithm of represen-
tatives C1

j , C2
j , respectively. We have:

h(C1
j) = h(C2

j) =⇒ blocks 6=∅(C1
j) = blocks 6=∅(C2

j) ∧
blocks 6=∅(C1

i) = blocks 6=∅(C2
i) ∧

h(blocks=∅(C1
j)) = h(blocks=∅(C2

j)) (7.1)

Now, we can distinguish two cases:
Case 1 ‘no new empty block arises’: Then we have:

blocks=∅(C1
j) = blocks=∅(C1

i) ∧ blocks=∅(C2
j) = blocks=∅(C2

i)

Together with equation 7.1, we see:

h(C1
j) = h(C2

j) =⇒ h(blocks=∅(C1
j)) = h(blocks=∅(C2

j))

=⇒ h(blocks=∅(C1
i)) = h(blocks=∅(C2

i))

=⇒ h(C1
i) = h(C2

i)

Case 2 ‘a new empty block B∗ arises’: Here, we have:

blocks=∅(C1
i) = blocks=∅(C1

j) ∪B∗ ∧ blocks=∅(C2
i) = blocks=∅(C2

j) ∪B∗

Applying Lemma 116 with A = blocks=∅(C1
j), B = blocks=∅(C2

j) and C = D = B∗, we have:

h(blocks=∅(C1
j) ∪B∗) = h(blocks=∅(C2

j) ∪B∗)
=⇒ h(blocks=∅(C1

i)) = h(blocks=∅(C1
i))

=⇒ h(C1
i) = h(C2

i).

In both cases, we have h(C1
i) = h(C2

i) and hence R is preserved by the forget-node-algorithm.

• The Introduce-Node-Algorithm:
Node i is an introduce node with child j. Let C1

j , C2
j be representatives of node j. Also,

let C1,up
i , C2,up

i , C1,down
i , C2,down

i be representatives of node i which are the results of the
Introduce-Node-Algorithm of representatives C1

j , C2
j , with respect to newly introduced

vertex being up or down.

h(C1
j) = h(C2

j) =⇒ blocks 6=∅(C1
j) = blocks 6=∅(C2

j)

=⇒ blocks 6=∅(C1,up
i) = blocks 6=∅(C2,up

i) ∧
blocks 6=∅(C1,down

i) = blocks 6=∅(C2,down
i) (7.2)

Furthermore, the algorithm does not modify the empty blocks of the classes:

blocks=∅(C1
j) = blocks=∅(C1,up

i) = blocks=∅(C1,down
i)

blocks=∅(C2
j) = blocks=∅(C2,up

i) = blocks=∅(C2,down
i)

7.3 Problems that Fit into this Framework 121

Thus, we have:

h(C1
j) = h(C2

j) =⇒ h(blocks=∅(C1
j)) = h(blocks=∅(C2

j))

=⇒ h(blocks=∅(C1,up
i)) = h(blocks=∅(C2,up

i))

Using this and equation 7.2, we see:

h(C1,up
i) = h(blocks=∅(C1,up

i) ∪ blocks 6=∅(C1,up
i))

= h(blocks=∅(C1,up
i)) ∪ blocks 6=∅(C1,up

i)

= h(blocks=∅(C2,up
i)) ∪ blocks 6=∅(C2,up

i)

= h(C2,up
i)

The statement h(C1,down
i) = h(C2,down

i) follows directly from:

blocks 6=∅(C1
j) = blocks 6=∅(C1,down

i) ∧ blocks 6=∅(C2
j) = blocks 6=∅(C2,down

i)

We conclude that R is preserved by the Introduce-Node-Algorithm.

• The Join-Node-Algorithm:
Node i is a join node with children j1, j2. Let C1

j1
, C2

j1
, C3

j2
, C4

j2
be compatible classes of nodes

j1 and j2, respectively. Let C13
i be the result of the Join-Node-Algorithm when processing

C1
j1

and C3
j2

. C14
i , C23

i and C24
i are defined in the same way. We have:

h(C1
j1) = h(C2

j1) =⇒ blocks 6=∅(C1
j1) = blocks 6=∅(C2

j1) ∧
h(blocks=∅(C1

j1)) = h(blocks=∅(C2
j1))

An analogous implication can be obtained with h(C3
j2

) = h(C4
j2

). Let C be a multiset of blocks,
then REPAIR(C) is the result of the REPAIR-algorithm of Section 7.1.2 applied to C. Then we
can see:

blocks 6=∅(C13
i) = REPAIR(blocks 6=∅(C1

j1) ∪ blocks 6=∅(C3
j2))

= REPAIR(blocks 6=∅(C2
j1) ∪ blocks 6=∅(C4

j2))

= blocks 6=∅(C24
i) (7.3)

Applying Lemma 116 with A = blocks=∅(C1
j1

), B = blocks=∅(C2
j1

), C = blocks=∅(C3
j2

) and
D = blocks=∅(C4

j2
), we get:

h(blocks=∅(C13
i)) = h(blocks=∅(C1

j1) ∪ blocks=∅(C3
j2))

= h(blocks=∅(C2
j1) ∪ blocks=∅(C4

j2))

= h(blocks=∅(C24
i)) (7.4)

From equations 7.3 and 7.4 it follows that h(C13
i) = h(C24

i). We can see h(C13
i) = h(C24

i) =
h(C23

i) = h(C14
i) by using symmetric arguments. Now it follows that R is preserved by the join-

node-algorithm. ut

122 7 Network Reliability: Graphs of Bounded Treewidth

We conclude that all relations of R are preserved by the algorithms. As an example, we consider
R = h=∅SL

con (h=∅6SL
con (h=∅S 6L

con (h=∅6S 6L
del (R̂)))). With this relation R ∈ R, we can answer the questions

which ask for the probabilities of (among others) the following properties: ‘at least half of the clients
are connected to at least one server’ or ‘at most x servers are not connected to a client’. Another
example is the classical S-terminal reliability problem, which can be solved with, e.g. the following
relation: h=∅SL

con (h=∅S 6L
con (h 6=∅SLdmulS(h 6=∅S 6LdmulS(h=∅SL

dmulS(h=∅S 6L
dmulS(h=∅6SL

del (h=∅6S 6L
del (R̂)))))))).

The next theorem summarises this section.

Theorem 118. Let R ∈ R be an equivalence relation which is fine enough for property Y . There is
an O(n · n2

c · n2
b · k) time algorithm for computing the probability that graph G has Y .

Proof. The correctness follows directly from Theorem 109, Lemma 117 and the discussion of the
global running time in Section 7.5. Also note that for all generated relations, we have that the set of
non-empty blocks of any two equivalent scenarios are equal. ut

Because of their special structure, we will analyse the running times of generated relations in the
next section. We will see that applying certain operations bounds the number of classes nc polynomi-
ally or by a constant.

7.3.3 Running Times of Generated Relations

In general, the running times of the procedures heavily depend on the chosen equivalence relations.
The choice of the relation is a crucial point. Hence, it is very hard to make a statement about running
times in general. For our generated or constructed relations, however, we are in a slightly better situ-
ation. The relation that can be used for the largest collection of properties R̂ has exponentially many
equivalence classes and therefore needs exponential time. By applying our operations inH, we reduce
the number of equivalence classes by a ‘roughly’ determinable amount.

Instead of giving a list of all possible combinations of operations, we consider a few cases which
appear especially useful. As an example, when using operation h=∅S 6L

dmulS , it can be reasonable to use
operation h 6=∅S 6LdmulS (and h=∅SL

dmulS) as well. Furthermore, operation h=∅6S 6L
del can almost always be used,

since empty blocks without flags cannot be used to make further connections, and they do not give
any information about servers or clients.

When giving upper bounds for the number of representatives, we can distinguish between the
number of possibilities due to the nonempty blocks and due to the empty blocks. For now, we only
consider the number of possibilities due to the nonempty blocks, with no respect to flags. This number
of possibilities due to the nonempty blocks is a constant and hence is not influenced by other input
parameters apart from the treewidth k. Therefore, we have to consider at most k+ 1 vertices per node
which can be taken to form blocks and classes. A rough upper bound for this number is

Ψ :=
k+1∑

i=1

(
k + 1
i

) i∑

j=1

{
i
j

}

This can be shown as follows. The rightmost term gives the number of partitions of i elements into
j nonempty subsets. It is known as the Stirling number of the second kind. See [52] for notations
and details. With the inner summation, we get the number of partitions of i elements into at most i
nonempty subsets. The binomial coefficient chooses i elements for partitioning among k+1 elements,
which are the vertices of one node of the tree-decomposition. Since not all nodes must have exactly

7.3 Problems that Fit into this Framework 123

k + 1 vertices and not all vertices have to be up, we have to use the left summation. Although, this
number can be rather large, it is a constant (which we refer to as Ψ) when k considered a constant.
After this preparatory work, we consider in the following cases some examples of sequences h of
operations inH.

Case 1 ‘the sequence h contains: h=∅6S 6L
del , h=∅S 6L

dmulS , h
=∅SL
dmulS , h

6=∅S 6L
dmulS , h

6=∅SL
dmulS’:

Any nonempty block can have 0 or 1 S-flags and between 0 and nL L-flags. These give at most
2 · (nL + 1) possibilities per nonempty block. When working with a tree-decomposition of width k,
there can be at most k + 1 nonempty blocks in any representative. For k + 1 blocks, this results in at
most (2 · (nL + 1))k+1 possibilities.

Now, we look at the number of possible equivalence classes caused by the empty blocks. We
denote the number of possibilities of empty blocks with at least one L-flag and no S-flag by Ψ ′. This
number only depends on nL. The number of possibilities with exactly i blocks with at least one L-flag
and no S-flag is at most the number of ways to choose a i− 1-element subset from an nL− 1-element
set, because we can choose i − 1 positions for placing separating lines in a sequence with nL flags.
These separating lines then define exactly i segments of the sequence of nL flags. Therefore, we have
(see e.g. [52] for notations and the last inequality):

Ψ ′ ≤
nL∑

i=1

(
nL − 1
i− 1

)
=

nL−1∑

i=0

(
nL − 1
i

)
≤ 2nL−1

Each of these blocks can have 0 or 1 S-flags and since we have at most nL such blocks, this results
in at most 2nL possibilities. Furthermore, we can have between 0 and nS empty blocks with exactly
one S-flag and no L-flags. (There are no empty blocks without flags.) Altogether, we have that the
number of equivalence classes is bounded by:

Ψ · (2 · (nL + 1))k+1 · Ψ ′ · 2nL · (nS + 1)

Example 119. With the relation

R = h=∅6S 6L
del (h=∅S 6L

dmulS(h=∅SL
dmulS(h 6=∅S 6LdmulS(h 6=∅SLdmulS(R̂)))))

we can solve among others the following problem for every x: ‘What is the probability that there are
at least x clients connected to each server?’ (we call this problem [≥ xL↔ ∀S]).

Corollary 120. If we do not allow empty blocks without any flags and if we bound the number of
S-flags per block to be at most one, we have O(nS · 2nL) classes per node, i.e. linear in nS , but
exponential in nL.

Case 2 ‘the sequence h contains: h=∅6S 6L
del , h=∅S 6L

dmulS , h=∅6SL
dmulL, h=∅SL

dmulS , h=∅SL
dmulL, h 6=∅S 6LdmulS , h 6=∅6SLdmulL, h 6=∅SLdmulS ,

h 6=∅SLdmulL’:

For a nonempty block, there are 4 possibilities: no flag, one S-flag, one L-flag, one of each flags.
Hence, we have at most 4k+1 possibilities for at most k + 1 nonempty blocks. One equivalence class
can have at most nS empty blocks with exactly only one S-flag. The situation is similar for blocks
with only L-flags, and the number of empty blocks with one S-flag and one L-flag is bounded by
min(nS , nL). In this case, the number of equivalence classes is bounded by:

Ψ · 4k+1 · (nS + 1) · (nL + 1) · (min(nS , nL) + 1)

124 7 Network Reliability: Graphs of Bounded Treewidth

Example 121. With the relation

R = h=∅6S 6L
del (h=∅S 6L

dmulS(h=∅6SL
dmulL(h=∅SL

dmulS(

h=∅SL
dmulL(h 6=∅S 6LdmulS(h 6=∅6SLdmulL(h 6=∅SLdmulS(h 6=∅SLdmulL(R̂)))))))))

we can solve among others the following problem for every x and y: ‘What is the probability that
there are x connected components with at least one client and no server, while there are at least y
connected components containing at least one server and no client?’

Corollary 122. If we do not allow empty blocks without any flags and if we bound the number of S-
flags and L-flags per block to be at most one, respectively, we have O(nS · nL ·min(nS , nL)) classes
per node.

Case 3 ‘the sequence h contains: h=∅6S 6L
del , h=∅S 6L

con , h=∅6SL
con , h=∅SL

con ’:

For one nonempty block, we have at most (nS + 1) · (nL + 1) possibilities for the number of L- and
S-flags. Considering k+ 1 nonempty blocks results in ((nS + 1) · (nL+ 1))k+1 possibilities. We have
at most one empty block with S-flags and no L-flags, which gives nS + 1 possibilities. The situation
is similar for a possible block with only L-flags, and if we have a block with both types of flags, then
there are nS · nL possible flag distributions. Multiplying these bounds results in an upper bound for
the number of equivalence classes:

Ψ · ((nS + 1) · (nL + 1))k+1 · (nS + 1) · (nL + 1) · (nS · nL + 1)

Example 123. With the relation

R = h=∅6S 6L
del (h=∅S 6L

con (h=∅6SL
con (h=∅SL

con (R̂))))

we can solve among others the following problem: ‘What is the probability that at least x clients are
not connected to a server while at least y servers have no client connected to it?’ ([≥ xL 6↔ S∧ ≥
yS 6↔ L]).

Corollary 124. If we do not allow empty blocks without any flags and if we have at most one empty
block with S-flags, at most one empty block with L-flags and at most one empty block with S- and
L-flags, then we have O(nk+3

S · nk+3
L) classes per node, i.e. polynomial in nS and nL.

Case 4 ‘the sequence h contains: h=∅6S 6L
del , h=∅S 6L

con , h=∅6SL
con , h=∅SL

con , h=∅S 6L
dmulS , h=∅6SL

dmulL, h=∅SL
dmulS , h=∅SL

dmulL,
h 6=∅S 6LdmulS , h 6=∅6SLdmulL, h 6=∅SLdmulS , h 6=∅SLdmulL and the h ...

con operations are applied earlier than the h ...
dmulS and

h ...
dmulL operations’:

This means, that after applying h each block can have at most one flag of each type. As in Case 2, we
have for the nonempty blocks 4k+1 possibilities. There are only 8 possibilities for the empty blocks,
since we only can have the following three blocks: { }S , { }SL, { }L, which may or may not exist in
an equivalence class. Hence, we have 8 possibilities. Altogether, the number of equivalence classes is
bounded by:

Ψ · 4k+1 · 8

7.3 Problems that Fit into this Framework 125

Example 125. With the relation

R = h=∅S 6L
dmulS(h=∅6SL

dmulL(h=∅SL
dmulS(h=∅SL

dmulL(h 6=∅S 6LdmulS(h 6=∅6SLdmulL(h 6=∅SLdmulS(h 6=∅SLdmulL(

h=∅6S 6L
del (h=∅S 6L

con (h=∅6SL
con (h=∅SL

con (R̂))))))))))))

we can solve among others the following problem: ‘What is the probability that each client is con-
nected to a server while each server has a client connected to it?’ ([L↔≥ 1S ∧ S ↔≥ 1L]).

Corollary 126. If we do not allow empty blocks without any flags and if we bound the number of S-
and L-flags per block to be at most one, respectively, and if we bound the number of empty blocks to
be constant, then we have a constant number of classes per node.

These four corollaries show, how applying operations from H can help to reduce the number of
classes. Recall that this yields algorithms that compute the corresponding probabilities of the prop-
erties for graphs, given with a tree-decomposition of width at most k. The running time of such an
algorithm is O(n) times the number of equivalence classes (i.e. representatives) per node. In the next
section, we consider answering questions, which ask for the probability that the surviving subgraph
has property Y1 and property Y2. For such a combination of properties, we can use a combination of
equivalence relations.

7.3.4 Combining Relations

Once we have relations for solving problems, we can combine them to create relations for ‘combined
problems’. We know that many relations allow us to solve more than one problem. Assume that we are
faced with a problem like ‘What is the probability that the surviving subgraph has properties A and
B?’ (e.g. problem [≥ xL ↔ S∧ ≥ yS ↔ L]) Let us assume further that we already have relations
RA and RB for computing the probabilities of A and B, respectively. We will see that we can use RA

and RB to create a new relation for property (A ∧B).

Lemma 127. Let RA and RB be two relations, that are proper and fine enough for property A and
B, respectively. Let RA∧B be the relation, such that for all C1 and C2 that are representatives of
scenarios f1 and f2, respectively, we have:

(C1, C2) ∈ RA∧B ⇐⇒ (C1, C2) ∈ RA ∧ (C1, C2) ∈ RB

Then RA∧B is proper and fine enough for property (A ∧B).

Proof. We have to show three properties: blocks 6=∅(C1) = blocks 6=∅(C2), the preservation by the
algorithms and the fineness of RA∧B .

The first property is easy to see, because two scenario representatives C1 and C2 can only be
equivalent under RA∧B if they are equivalent under RA and RB . Since RA and RB are proper, we
have: blocks 6=∅(C1) = blocks 6=∅(C2).

To see the preservation by the algorithms, we look at a join node i with children j1 and j2. We use
the notation introduced in Section 7.1.4 and utilised in Section 7.2.5. Then we have:

126 7 Network Reliability: Graphs of Bounded Treewidth

(C1
j1
, C2

j1
) ∈ RA∧B ∧ (C1

j2
, C2

j2
) ∈ RA∧B

=⇒




(C1
j1
, C2

j1
) ∈ RA
∧

(C1
j1
, C2

j1
) ∈ RB


 ∧




(C1
j2
, C2

j2
) ∈ RA
∧

(C1
j2
, C2

j2
) ∈ RB




=⇒




(C1
j1
, C2

j1
) ∈ RA
∧

(C1
j2
, C2

j2
) ∈ RA


 ∧




(C1
j1
, C2

j1
) ∈ RB
∧

(C1
j2
, C2

j2
) ∈ RB




=⇒




(C11
i , C

12
i) ∈ RA ∧

(C12
i , C

21
i) ∈ RA ∧

(C21
i , C

22
i) ∈ RA


 ∧




(C11
i , C

12
i) ∈ RB ∧

(C12
i , C

21
i) ∈ RB ∧

(C21
i , C

22
i) ∈ RB




=⇒




(C11
i , C

12
i) ∈ RA∧B ∧

(C12
i , C

21
i) ∈ RA∧B ∧

(C21
i , C

22
i) ∈ RA∧B




Hence,RA∧B is preserved by the Join-Node-Algorithm. The preservation by the Introduce-
and Forget-Node-Algorithm can be proven in an analogous way.

Next, we prove the fineness of the relations. We look at a node i of T . There we select an equiv-
alence class representative C of RA∧B . We will derive a contradiction: Assume we have two sce-
nario representatives C1 and C2 with: C1 has property (A ∧ B) and C2 does not have (A ∧ B) and
C1, C2 ∈ C. That means ‘C1 has A and C1 has B’ and ‘C2 does not have A or C2 does not have B’
and:

(C1, C2) ∈ RA∧B =⇒

(C1, C2) ∈ RA ∧ (C1, C2) ∈ RB

=⇒


[
C1 has A ∧ C2 has A

]

∨[
C1 has ¬A ∧ C2 has ¬A

]


 ∧



[
C1 has B ∧ C2 has B

]

∨[
C1 has ¬B ∧ C2 has ¬B

]




From the assumption ‘C1 has (A ∧B)’, we have:

C1 has A ∧ C1 has B =⇒ C2 has A ∧ C2 has B,

which is a contradiction to ‘C2 has ¬(A ∧ B)’, and hence RA∧B is fine enough for (A ∧ B), which
completes the proof. ut

Other Combinations.

The previous lemma only considers the combination of two relations with the logical ‘and’. A natural
question to ask is whether combining relations can also be applied to the logical ‘not’ and the logical
‘or’.

7.4 Example of an Extension 127

Given a graph property A and a relation RA to compute the probability pA that the surviving
subgraph has property A. To compute the probability p¬A that the surviving subgraph does not have
property A, i.e. it has ¬A, we can simply compute p¬A = 1− pA using RA. Hence, the relations RA

and R¬A for property A and ¬A, respectively, are identical.
We assume now, that we have two relations RA and RB for properties A and B, respectively.

Defining RA∨B in the way of Lemma 127 will not result in an equivalence relation, because due
to the transitivity of such a relation, two scenarios would be equivalent under RA∨B even if they
are neither equivalent under RA nor under RB . However, using basic logical rules, we still can
compute the probability pA∨B that the surviving subgraph has property A or property B (whereat
p¬A∧B is the probability that the surviving subgraph does not have property A, but it has property B;
pA∧B, pA∧¬B, p¬A∧¬B are defined accordingly):

pA∨B = pA∧B + p¬A∧B + pA∧¬B = 1− p¬A∧¬B

The two previous Lemmas 117 and 127 give us powerful tools for generating and combining
relations. For these new relations, it is not necessary to prove the properness and fineness, respectively,
as long as the original relations have these properties. We will look at examples of questions that can
be answered with the framework:

• What is the probability that in the surviving subgraph not every client is connected to a server?
(problem [≥ 1L 6↔ S])

• What is the probability that in the surviving subgraph each client is connected to a server and that
each server has a client connected to it? ([L↔≥ 1S ∧ S ↔≥ 1L])

• What is the probability that in the surviving subgraph all servers are connected or that each server
is connected to at least 5 clients? ([S ↔ t ∨ S ↔≥ 5L])

For these, we need equivalence relations for the single properties in each question. These single
properties, however, fit into our framework and hence, due to Lemma 127, the three combined prop-
erties of the questions above fit as well.

7.4 Example of an Extension – The Expected Number of Components with a Certain
Property

We give a description of an example relation R, which cannot be generated by the methods of the
previous sections. The goal is to answer the questions: ‘What is the expected number of components
with at least one server and no clients (at least one client, no servers; at least one client and at least one
server)?’ ([Ec ≥ 1(S∧ 6L)]). This question differs from ‘What is the probability that G has property
Y ?’ Even though, our framework can be used to answer this question, since the representatives of
the equivalence classes ‘show enough information’. However, some modifications or extensions are
necessary.

Definition ofR

We consider two scenario representatives C1 and C2 of node i. The scenarios represented by C1 and
C2 are defined to be equivalent, if they are equal on their nonempty blocks, i.e.:

(C1, C2) ∈ R⇐⇒

128 7 Network Reliability: Graphs of Bounded Treewidth

h=∅6S 6L
del (h=∅S 6L

del (h=∅6SL
del (h=∅SL

del (C1)))) = h=∅6S 6L
del (h=∅S 6L

del (h=∅6SL
del (h=∅SL

del (C2))))

Even though we can use the operations of Section 7.3.2 to define the considered equivalence rela-
tion, we are not able to use our framework without further modifications. This is because the represen-
tative C of an equivalence class [C] of node i will have a special structure. All empty blocks will be
replaced by three special blocks: {eS(C)}S , {eL(C)}L and {eSL(C)}SL. The nonempty blocks will
be the same as the ones of the represented scenarios and eS(C), eL(C) and eSL(C) are real num-
bers. We will only go into details for eS(C), since for eL(C) and eSL(C) it is analogue. The number
eS(C) is the expected number of components of Gi, with empty intersection with Xi, with at least
one server and no client given the fact thatGi is in one of the scenarios represented by C. The number
of components of G[V f=1

i] with at least one server and no client and with empty intersection with
Xi is |blocks=∅S 6L(blocksi(f))|, which is the number of empty blocks with at least one S-flag and no
L-flags of the representative for scenario f . Then we have:

eS(C) =
∑

f∈C
Pr(f) · |blocks=∅S 6L(blocksi(f))|

Fineness and Preservation ofR

The preservation is easy to see, since the algorithms only affect the nonempty blocks. Thus, in each
case equivalent scenarios are treated in the same way and, hence, are equivalent after processing by
the algorithms. A formal proof uses the same ideas and would be similar to the proof of Lemma 117.

The fineness of a relation is defined using the fact that scenarios can or cannot have specific prop-
erties. On the other hand, ‘the expected number of components with at least on server and no client’
is a number and not a property. That is why the term ‘fine enough’ is not really applicable for our
question. However, we can use the equivalence classes of R in the following way. We consider a node
i and all its equivalence classes [C]. Then, the expected number of components of Gi with at least one
server and no client is:

∑

[C]:[C] is eq.class of i

Pr([C]) · (eS(C) + |blocks 6=∅S 6L(C)|)

Modification of the Algorithms

Since we have a differently structured problem, we modify our algorithms slightly. These modifica-
tions maintain eS from node to node (and also eL and eSL). Introduce-nodes need no special treatment,
because the set of empty blocks is not changed. This is different with forget-nodes. We consider an
equivalence class [C]. If we create a new empty block with only S-flags, then we delete it and in-
crease eS(C) by one. The correctness of this is easy to see, since all scenarios of [C] would now have
one more empty block with only S-flags. For a join-node i with children j1 and j2, we add the two
eS numbers of the ‘source’ representatives together to obtain eS(C) of the resulting class C. This
can be understood by bringing into mind that an equivalence class C of i represents scenarios of Gi

which contains as subgraphs Gj1 and Gj2 . Furthermore, the empty components of Gj1 and Gj2 are
not influencing each other.

There is one thing left we have to do: the modification of the code-fragment in Step 2 in Sec-
tion 7.2.2. If two equivalence classes [C1] and [C2] become equivalent, we have to modify eS(C) of
the resulting equivalence class [C], using eS(C1) and eS(C2) in the following way, which is not hard
to see.

7.5 Concluding Remarks 129

eS(C) =
eS(C1) · Pr(C1) + eS(C2) · Pr(C2)

Pr(C)

(Note that Pr(C) 6= 0, since otherwise there would be a vertex v being up and p(v) = 0, or there
would be a vertex v being down and p(v) = 1.) The numbers eL(C) and eSL(C) are computed in the
same way.

Running Time

The overall running time of the algorithms isO(n2
c ·n2

b ·k2). For our relationRwe have nb ≤ k+1+3,
since we have at most k + 1 nonempty blocks and 3 special blocks, which actually do not play a role
in class distinction. The analysis of the maximum number of equivalence classes is similar to Case 4
in Section 7.3.3. Hence, nc is a constant.

Conclusion

The problem ‘What is the expected number of components with at least one server and no clients?’
does not fit into the framework as described in the previous sections. However, we have seen that with
additional modifications of the framework, we can obtain an algorithm to solve this problem in linear
time on graphs with given tree-decomposition of width at most k.

7.5 Concluding Remarks

We presented a framework for a variety of network reliability problems for graphs of bounded
treewidth. The method itself is general enough for extensions which might be necessary to enable
faster running times and/or additional properties to check. Those properties that can be checked with
classes, i.e. those properties for which our framework is applicable, concern connections between sets
of vertices. Examples of network reliability problems were considered throughout the last two chap-
ters. Some of them can be solved in linear time on graphs of bounded treewidth, while others need
polynomial time, and some problems even require time that is exponential in certain input-parameters
(e.g. the number of clients or servers, nL or nS , respectively). The next theorem summarises the
computational complexity of the problems in Section 6.2.3 on graphs of bounded treewidth.

Theorem 128. Let G be a graph with n vertices, and let tw(G) be bounded by some constant k.

1. The problems [2↔ t], [S ↔ t] and [L↔≥ 1S] can be solved in O(n) time.
2. The problem [≥ xS] can be solved in O(n · 2O(nS)) time.
3. The problem [Ec ≥ 1S] can be solved in O(n) time.
4. The problems [≥ x1L 6↔≥ 1S], [≤ x2L ↔≥ 1S], [< x3L 6↔≥ 1S], [> x4L ↔≥ 1S] and

[1− [< x3L 6↔≥ 1S]] can be solved in time O(n · nS · 2O(nL)).
5. The problems [≤ yS 6↔ L] and [≥ 1L↔≥ xS] can be solved in time O(n · nS · 2O(nL)).
6. The problem [≥ xL↔ S∧ ≥ yS ↔ L] can be solved in polynomial time.

Proof. To prove the theorem, we use Theorem 118 and the analysis in the cases given in Section 7.3.3.
Furthermore, see the discussion in Section 7.5 for remarks on the overall running time.

(1) We can use the relation given in Example 125. It is easy to see that this relation is fine enough
for the considered problems. See Corollary 126 for the running time.

130 7 Network Reliability: Graphs of Bounded Treewidth

(2) We can ignore all L-flags, since they are not important for the problem. At the end, we need
scenarios that contain a block with at least x S-flags. A similar relation to the one in Example 119 can
be used for this. The analysis of that relation shows the running time.

(3) This problem is dealt with in Section 7.4, where we see that it can be solved in the claimed
time bound.

(4) Using the relation defined in Example 119, we can solve the problem in the stated time (see
Corollary 120).

(5) See (4) with the roles of L and S exchanged.
(6) We can use the relation in Example 123. The running time is stated in Corollary 124. ut

It remains a further research topic, to develop a more powerful framework that can handle further
properties, like ‘What is the probability that the surviving subgraph has a dominating set of size≤ k?’

Treewidth vs. Pathwidth

In Section 7.2.4, we required a relation R to be preserved by all three algorithms. We can refrain
from this demand, if we look at graphs of bounded pathwidth. A path-decomposition of G is a tree-
decomposition (T,X) of G whereat T is a path. Hence, join-nodes do not appear and thus, R does
not have to be preserved by the Join-Node-Algorithm. This may enable more relations, but on
the other hand we have to use a path-decomposition.

Running Times

The running time for our algorithm heavily depends on the chosen relation R. We can see it is very
important to choose a relation ‘as coarse as possible’. All considered algorithms run in time O(n2

c ·
n2
b ·k2) per node. In [61], Kloks shows that there are nice tree-decompositions with at most 4 ·n nodes

(thus linear in n = |V (G)|). Hence, we have the global running time O(n · n2
c · n2

b · k2).
Furthermore, the framework provides enough possibilities for using additional tricks, ideas and

modifications. It may be necessary to use them to get the best running time, as shown in Section 7.4.
One general possibility to decrease the running time would be to delete classes as soon as possible,
if they can never have the required property. Another possibility is not to delete whole classes, but
single blocks that are not needed for determining the required probability. Fewer blocks result in
fewer classes, since we have less objects that can make a difference in class distinction. However, the
performance gain of these approaches is not easy to analyse.

References

1. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.
SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

2. S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. J. Algo-
rithms, 12:308–340, 1991.

3. S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees. SIAM J.
Alg. Disc. Meth., 7:305–314, 1986.

4. S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to
partial k-trees. Disc. Appl. Math., 23:11–24, 1989.

5. E. Bachoore and H. L. Bodlaender. New upper bound heuristics for treewidth. Technical Report
UU-CS-2004-036, Institute for Information and Computing Sciences, Utrecht University, Utrecht,
The Netherlands, 2004.

6. M. Behzad, G. Chartrand, and L. Lesniak-Foster. Graphs and Digraphs. Pindle, Weber &
Schmidt, Boston, 1979.

7. J. R. S. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In A. George,
J. R. Gilbert, and J. H. U. Liu, editors, Graph Theory and Sparse Matrix Computations, pages
1–29, New York, 1993. Springer-Verlag.

8. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–23, 1993.
9. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.

SIAM J. Comput., 25:1305–1317, 1996.
10. H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In I. Privara and P. Ruzicka,

editors, Proceedings of the 22nd International Symposium on Mathematical Foundations of Com-
puter Science, MFCS’97, pages 19–36, Berlin, 1997. Springer-Verlag, Lecture Notes in Computer
Science, vol. 1295.

11. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc.,
209:1–45, 1998.

12. H. L. Bodlaender. Necessary edges in k-chordalizations of graphs. Journal of Combinatorial
Optimization, 7:283–290, 2003.

13. H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth, path-
width, frontsize, and minimum elimination tree height. J. Algorithms, 18:238–255, 1995.

14. H. L. Bodlaender and A. M. C. A. Koster. On the Maximum Cardinality Search lower bound
for treewidth. In J. Hromkovic̆, M. Nagl, and B. Westfechtel, editors, Proc. 30th International
Workshop on Graph-Theoretic Concepts in Computer Science WG 2004, pages 81–92. Springer-
Verlag, Lecture Notes in Computer Science 3353, 2004.

132 References

15. H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. In Proceedings 6th
Workshop on Algorithm Engineering and Experiments ALENEX04, pages 70–78, 2004.

16. H. L. Bodlaender, A. M. C. A. Koster, F. v. d. Eijkhof, and L. C. van der Gaag. Pre-processing
for triangulation of probabilistic networks. In J. Breese and D. Koller, editors, Proceedings of
the 17th Conference on Uncertainty in Artificial Intelligence, pages 32–39, San Francisco, 2001.
Morgan Kaufmann.

17. H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth lower bounds. In
S. Albers and T. Radzik, editors, Proceedings 12th Annual European Symposium on Algorithms,
ESA2004, pages 628–639. Springer, Lecture Notes in Computer Science, vol. 3221, 2004.

18. H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth lower bounds.
Technical Report UU-CS-2004-34, Dept. of Computer Science, Utrecht University, Utrecht, The
Netherlands, 2004.

19. H. L. Bodlaender and R. H. Möhring. The pathwidth and treewidth of cographs. SIAM J. Disc.
Math., 6:181–188, 1993.

20. H. L. Bodlaender and T. Wolle. Contraction degeneracy on cographs. Technical Report UU-CS-
2004-031, Institute for Information and Computing Sciences, Utrecht University, Utrecht, The
Netherlands, 2004.

21. H. L. Bodlaender and T. Wolle. A note on the complexity of network reliability problems. Tech-
nical Report UU-CS-2004-001, Institute for Information and Computing Sciences, Utrecht Uni-
versity, Utrecht, The Netherlands, 2004.

22. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. American Elsevier, MacMillan,
New York, London, 1976.

23. Boost C++ Libraries. http://www.boost.org, 2005-02-21.
24. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs, and

graph planarity using pq-tree algorithms. J. Comp. Syst. Sc., 13:335–379, 1976.
25. R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algorithms from

predicate calculus descriptions of problems on recursively constructed graph families. Algorith-
mica, 7:555–581, 1992.

26. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes – A Survey. Society for Industrial and
Applied Mathematics, Philadelphia, 1999.

27. A. Bretscher, D. Corneil, M. Habib, and C. Paul. A simple linear time LexBFS cograph recogni-
tion algorithm. In H. L. Bodlaender, editor, Proceedings 29th International Workshop on Graph-
Theoretic Concepts in Computer Science WG’03, pages 119–130. Springer Verlag, Lecture Notes
in Computer Science, vol. 2880, 2003.

28. B. Burgstaller, J. Blieberger, and B. Scholz. On the tree width of ada programs. In A. Llamosı́
and A. Strohmeier, editors, Reliable Software Technologies - Ada-Europe 2004: 9th Ada-Europe
International Conference on Reliable Software Technologies, pages 78–90. Springer-Verlag, Lec-
ture Notes in Computer Science, vol. 3063, 2004.

29. J. Carlier and C. Lucet. A decomposition algorithm for network reliability evaluation. Discrete
Applied Mathematics, 65:141–156, 1996.

30. K. Cattell, M. J. Dinneen, R. G. Downey, M. R. Fellows, and M. A. Langston. On computing
graph minor obstruction sets. Theor. Comp. Sc., 233:107–127, 2000.

31. F. Clautiaux, S. N. A. Moukrim, and J. Carlier. Heuristic and meta-heuristic methods for comput-
ing graph treewidth. RAIRO Oper. Res., 38:13–26, 2004.

32. F. Clautiaux, J. Carlier, A. Moukrim, and S. Négre. New lower and upper bounds for graph
treewidth. In J. D. P. Rolim, editor, Proceedings International Workshop on Experimental and Ef-

References 133

ficient Algorithms, WEA 2003, pages 70–80. Springer Verlag, Lecture Notes in Computer Science,
vol. 2647, 2003.

33. W. Cook and P. D. Seymour. Tour merging via branch-decomposition. Informs J. on Computing,
15(3):233–248, 2003.

34. G. F. Cooper. The computational complexity of probabilistic inference using bayesian belief
networks. Artificial Intelligence, 42:393–405, 1990.

35. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cam-
bridge, Mass., USA, 1989.

36. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms – Second
Edition. MIT Press, Cambridge, Mass., USA, 2001.

37. D. G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible graphs. Annals
Discrete Math., 1:145–162, 1981.

38. D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for cographs. SIAM J.
Comput., 14:926–934, 1985.

39. B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Information and Computation, 85:12–75, 1990.

40. B. Courcelle. The monadic second-order logic of graphs III: Treewidth, forbidden minors and
complexity issues. Informatique Théorique, 26:257–286, 1992.

41. G. Demoucron, Y. Malgrange, and R. Pertuiset. Graphes planaires: reconnaissance et construction
de representations planaires topologiques. Rev. Francaise Recherche Operationelle, 8:33–47,
1964.

42. R. Diestel. Graph Theory. Springer-Verlag, New York, 2000.
43. R. Diestel. Graph theory – electronic edition 2000. http://www.math.uni-hamburg.de

/home/diestel/books/graph.theory, 2005-01-26.
44. The second DIMACS implementation challenge: NP-Hard Problems: Maximum Clique, Graph

Coloring, and Satisfiability. http://dimacs.rutgers.edu/Challenges/, 1992–1993.
45. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1998.
46. F. v. d. Eijkhof and H. L. Bodlaender. Safe reduction rules for weighted treewidth. In L. Kuc̆era,

editor, Proceedings 28th Int. Workshop on Graph Theoretic Concepts in Computer Science,
WG’02, pages 176–185. Springer Verlag, Lecture Notes in Computer Science, vol. 2573, 2002.

47. I. S. Filotti, G. L. Miller, and J. Reif. On determining the genus of a graph in O(V O(g)) steps.
In Proceedings of the 11th Annual Symposium on Theory of Computing, pages 27–37, New York,
1979. ACM Press.

48. L. Fortnow. Counting complexity. In L. A. Hemaspaandra and A. Selman, editors, Complexity
Theory Retrospective II, pages 81–107. Springer-Verlag, 1997.

49. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York, 1979.

50. V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In proceedings UAI’04,
Uncertainty in Artificial Intelligence, 2004.

51. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York,
1980.

52. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley Publishing
Company, Amsterdam, 1989.

53. J. Gross and J. Yellen. Graph Theory and Its Applications. New York, CRC Press, 1999.
54. F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.
55. I. V. Hicks. Planar branch decompositions I: The ratcatcher. INFORMS Journal on Computing

(to appear, 2005).

134 References

56. D. S. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publishing Company,
Boston, 1997.

57. J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21:549–568, 1974.
58. F. V. Jensen. Bayesian Networks and Decision Graphs. Statistics for Engineering and Information

Science, Springer-Verlag, New York, 2001.
59. M. Jerrum. On the Complexity of Evaluating Multivariate Polynomials. PhD thesis, Dept. Com-

puter Science, University Edinburgh, 1981.
60. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,

editors, Complexity of Computer Computations, pages 85 – 104. Plenum Press, 1972.
61. T. Kloks. Treewidth. PhD thesis, Utrecht University, Utrecht, The Netherlands, 1993.
62. A. M. C. A. Koster. Frequency Assignment - Models and Algorithms. PhD thesis, Univ. Maas-

tricht, Maastricht, The Netherlands, 1999.
63. A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Computational

experiments. In H. Broersma, U. Faigle, J. Hurink, and S. Pickl, editors, Electronic Notes in
Discrete Mathematics, volume 8. Elsevier Science Publishers, 2001.

64. A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving partial constraint satisfaction
problems with tree decomposition. Networks, 40:170–180, 2002.

65. A. M. C. A. Koster, T. Wolle, and H. L. Bodlaender. Degree-based treewidth lower bounds.
Technical Report UU-CS-2004-050, Institute for Information and Computing Sciences, Utrecht
University, Utrecht, The Netherlands, 2004.

66. A. M. C. A. Koster, T. Wolle, and H. L. Bodlaender. Degree-based treewidth lower bounds. In
Proceedings 4th International Workshop on Experimental and Efficient Algorithms, WEA 2005.
Springer-Verlag, Lecture Notes in Computer Science, to appear, 2005.

67. S. K. Lando and A. K. Zvonkin. Graphs on Surfaces and Their Applications. Springer-Verlag,
Heidelberg, 2004.

68. S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical struc-
tures and their application to expert systems. The Journal of the Royal Statistical Society. Series
B (Methodological), 50:157–224, 1988.

69. H. Lerchs. On cliques and kernels. Technical report, Dept. of Computer Science, University of
Toronto, 1971.

70. B. Lucena. A new lower bound for tree-width using maximum cardinality search. SIAM J. Disc.
Math., 16:345–353, 2003.

71. C. Lucet, J.-F. Manouvrier, and J. Carlier. Evaluating network reliability and 2-edge-connected
reliability in linear time for bounded pathwidth graphs. Algorithmica, 27:316–336, 2000.

72. E. Mata-Montero. Reliability of Partial k-Tree Networks. PhD thesis, University of Oregon, 1990.
73. B. Mohar and C. Thomassen. Graphs on Surfaces. The Johns Hopkins University Press, Balti-

more, 2001.
74. A compendium of NP optimization problems. http://www.nada.kth.se/˜viggo

/problemlist/compendium.html, 2005-02-17.
75. J. Provan and M. O. Ball. The complexity of counting cuts and of computing the probability that

a network remains connected. SIAM J. Comput., 12(4):777–788, 1983.
76. S. Ramachandramurthi. Algorithms for VLSI Layout Based on Graph Width Metrics. PhD thesis,

Computer Science Department, University of Tennessee, Knoxville, Tennessee, USA, 1994.
77. S. Ramachandramurthi. The structure and number of obstructions to treewidth. SIAM J. Disc.

Math., 10:146–157, 1997.
78. G. Ringel. Map Color Theorem. Springer-Verlag, Berlin, 1974.

References 135

79. N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. J. Comb. Theory Series B,
35:39–61, 1983.

80. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J. Algo-
rithms, 7:309–322, 1986.

81. N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. J. Comb.
Theory Series B, 63:65–110, 1995.

82. N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. J. Comb. Theory
Series B, 92:325–357, 2004.

83. N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a planar graph. J. Comb. Theory
Series B, 62:323–348, 1994.

84. H. Röhrig. Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut für
Informatik, Saarbrücken, Germany, 1998.

85. D. J. Rose. On simple characterization of k-trees. Disc. Math., 7:317–322, 1974.
86. A. Rosenthal. Computing the reliability of complex networks. SIAM J. Appl. Math., 32:384–393,

1977.
87. P. Scheffler. Die Baumweite von Graphen als ein Maß für die Kompliziertheit algorithmischer

Probleme. PhD thesis, Akademie der Wissenschaften der DDR, Berlin, 1989.
88. P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241,

1994.
89. K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangulations. In Proc.

National Conference on Artificial Intelligence (AAAI ’97), pages 185–190. Morgan Kaufmann,
1997.

90. R. E. Tarjan and M. Yannakakis. Simple linear time algorithms to test chordiality of graphs, test
acyclicity of graphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput., 13:566–579,
1984.

91. C. Thomassen. The graph genus problem is NP-complete. J. Algorithms, 10:568–576, 1989.
92. M. Thorup. Structured programs have small tree-width and good register allocation. Information

and Computation, 142:159–181, 1998.
93. Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib, 2004-03-31.
94. L. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput., 6:410–421,

1979.
95. L. C. van der Gaag and H. L. Bodlaender. Comparing loop cutsets and clique trees in probabilistic

networks. Technical Report UU-CS-1997-042, Institute for Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands, 1997.

96. T. Wolle. A framework for network reliability problems on graphs of bounded treewidth. In
P. Bose and P. Morin, editors, Algorithms and Computation, Proceedings of the 13th Interna-
tional Symposium, ISAAC 2002, pages 137–149, Berlin, 2002. Springer-Verlag, Lecture Notes in
Computer Science, vol. 2518.

97. T. Wolle. A framework for network reliability problems on graphs of bounded treewidth. Techni-
cal Report UU-CS-2003-026, Institute for Information and Computing Sciences, Utrecht Univer-
sity, Utrecht, The Netherlands, 2003.

98. T. Wolle and H. L. Bodlaender. A note on edge contraction. Technical Report UU-CS-2004-028,
Institute of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands,
2004.

99. T. Wolle, A. M. C. A. Koster, and H. L. Bodlaender. A note on contraction degeneracy. Technical
Report UU-CS-2004-042, Institute of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands, 2004.

Acknowledgements

I would like to thank all persons who helped me making this thesis. For very useful scientific discus-
sions and comments, I am grateful to Hans L. Bodlaender, Sergio Cabello, Frank van den Eijkhof,
Andreas Eisenblätter, Mark Jerrum, Arie M. C. A. Koster, Dieter Kratsch, Jan van Leeuwen, Peter
Lennartz, Gerard Tel, Carsten Thomassen, Peter Verbaan, the reading committee of this thesis and
others. I am indebted to Ian Sumner, Pauline Vollmerhaus, Annemarie Kerkhoff, Shay Uzery and
Peter Verbaan for proof-reading parts of my work.

I would like to extend special thanks to my supervisors Hans L. Bodlaender and Jan van Leeuwen
for their supervision, suggestions, explanations and improvements, and also thanks to Arie M. C. A.
Koster. It has been a pleasure to work with them. Arie, thank you very much for inviting me to Berlin,
and Hans, thank you very much for all your support, stimulations, insight, guidance and patience.

Samenvatting

Grafen zijn een onderdeel van vele systemen. Vaak kunnen we de structuur van projekten, sce-
nario’s en data in het algemeen door grafen representeren en modelleren. Op deze abstracte modellen
proberen wetenschappers problemen op te lossen die ook in de praktijk zeer belangrijk zijn, of ze
tonen aan dat een probleem op algemene grafen waarschijnlijk erg lastig (bijvoorbeeld NP -moeilijk)
is. Bekijken we grafen met een speciale structuur, dan kan het toch mogelijk zijn om juist deze struc-
tuur te benutten om in het algemeen lastige problemen efficiënt op te lossen. Grafen met begrensde
boombreedte hebben zo’n speciale structuur, en zij vormen het hoofdonderwerp van dit proefschrift.

Grafen met begrensde boombreedte zijn in de laatste jaren steeds belangrijker geworden—zowel
in theorie als in de praktijk. Bomen zijn ook een speciale klasse grafen, waarop veel problemen ef-
ficiënt oplosbaar zijn. De boombreedte van een graaf geeft aan hoe sterk de graaf met een boom
verwant is: hoe kleiner de boombreedte, hoe meer verwantschap. Veel praktisch relevante problemen
zijn NP -moeilijk voor algemene grafen, terwijl ze gemakkelijk (soms zelfs triviaal) zijn voor bomen.
De gelijkenis van grafen met begrensde boombreedte met bomen maakt het mogelijk dat veel (in het
algemeen) NP -moeilijke problemen efficiënt opgelost kunnen worden op deze grafen. Het bepalen
van de boombreedte van een graaf is echter zelf ook een NP -moeilijk probleem. In dit proefschrift
bekijken we methoden om ondergrenzen voor de boombreedte van grafen te berekenen en hoe men
de betrouwbaarheid van netwerken kan berekenen op grafen met begrensde boombreedte.

Na een inleiding in Hoofdstuk 1 geven we in Hoofdstuk 2 algemene definities en begrippen uit
de grafentheorie, met name bekijken we het contraheren of samentrekken van een kant. Dit is een
bekende operatie die een kant e = {u,w} en zijn twee eindpunten u en w vervangt door een nieuwe
knoop ve, zodanig dat ve met alle knopen die ook met u of w door een kant verbonden waren, door
een kant verbonden is. Veel eigenschappen van deze operatie zijn intuı̈tief, wij geven echter een gede-
tailleerde beschrijving van de operatie, die verder gaat dan bestaande beschrijvingen. In Hoofdstuk
2 geven we een formalisatie van deze operatie. Verder bekijken we in dat hoofdstuk subgrafen en
minoren. Voor minoren is het samentrekken van een kant een essentiël punt. We definiëren ook de
begrippen boomdecompositie en boombreedte. Aan het einde van Hoofdstuk 2 bekijken we de op-
eratie van het onderverdelen van een kant en het effect op de boombreedte van een graaf van deze
operatie. Een kant onderverdelen betekent een knoop op die kant zetten, of met andere woorden, een
kant vervangen door een pad van lengte twee.

In Hoofdstuk 3 onderzoeken we een aantal parameters die allemaal een ondergrens voor de boom-
breedte van een graaf zijn. Het hoofdidee voor nieuwe parameters daarbij is bekende boombreedte-
ondergrenzen over alle subgrafen of minoren van de oorspronkelijke graaf te nemen, want de boom-
breedte van een subgraaf of minor van een graaf is altijd hooguit de boombreedte van de oorspron-
kelijke graaf. Een van die parameters is δ(G)—de kleinste graad in G. De parameters δD(G) (ook

140 Samenvatting

bekend als ‘degeneracy’) en δC(G) zijn gedefinieerd als het maximum over alle subgrafen (bij δC:
minoren) G′ van G, van δ(G′). Zes andere parameters zijn op dezelfde manier gedefinieerd, maar in
plaats van δ wordt δ2 of γR gebruikt. De parameter δ2(G) is de graad van de knoop met de op een na
kleinste graad in G, en γR(G) is het minimum over alle paren verschillende knopen u en w die niet
door een kant verbonden zijn van het maximum van de graad van u en de graad van w. We bewijzen
dat alle parameters ondergrenzen voor boombreedte zijn, waarbij we gebruik maken van het feit dat
δ, δ2 en γR al bekend zijn als ondergrenzen voor boombreedte. Verder tonen we verhoudingen tussen
deze parameters aan en bewijzen de NP -moeilijkheid van het berekenen van sommige van deze pa-
rameters. We laten ook zien dat deze parameters matige resultaten (als boombreedte-ondergenzen)
zullen geven op grafen met kleine genus. Twee andere parameters zijn gebaseerd op ‘Maximum Car-
dinality Search’ (MCS). Ook hier combineren wij een bekende boombreedte-ondergrens (namelijk
MCSLB) met het samentrekken van kanten, dat wil zeggen, met minoren, en krijgen de ondergrens
MCSLBC, die ook NP -moeilijk is om te berekenen. Aan het einde van Hoofdstuk 3 beschrijven
we een al bekende manier om elke andere boombreedte-ondergrens te verbeteren. Deze methode is
gebaseerd op zogenaamde ‘graph improvements’.

Na het theoretische onderzoek in Hoofdstuk 3 gaan we in Hoofdstuk 4 de boombreedte-ondergren-
zen experimenteel evalueren. Aan het begin van dat hoofdstuk beschrijven we een datastructuur die
gebaseerd is op een ‘adjacency-list’ datastructuur en door een ‘bucket’ structuur wordt uitgebreid.
Omdat sommige (voor ons belangrijke) bewerkingen zeer efficiënt kunnen worden uitgevoerd met
deze datastructuur, is hij geschikt voor vele algoritmen en heuristieken in dit hoofdstuk. Voor de pa-
rameters die in polynomiale tijd exact kunnen worden berekend, ontwikkelen we algoritmen en tonen
hun correctheid en looptijd aan (voor zover ze niet triviaal zijn). Voor de parameters die NP -moeilijk
zijn om te berekenen stellen we een aantal heuristieken voor. Van sommige van deze heuristieken
kunnen we aantonen dat ze in de praktijk redelijk goed werken maar theoretisch willekeurig slecht
kunnen zijn. Verder introduceren we nog een andere manier om heuristieken gebaseerd op ‘graph
improvements’ met het samentrekken van kanten te combineren. In de experimenten in dit hoofdstuk
vergelijken we de behaalde boombreedte-ondergrenzen en ook de daarvoor nodige looptijden van
de algoritmen en heuristieken. Een niet verrassend resultaat is dat vaak ingewikkelder algoritmen en
heuristieken betere boombreedte-ondergrenzen kunnen geven, hoewel dit ten koste gaat van de loop-
tijd. In het algemeen wordt zeer goed duidelijk dat het combineren van boombreedte-ondergrenzen
met het samentrekken van kanten (d.w.z. het nemen van het maximum van die ondergrens over mi-
noren van de oorspronkelijke graaf) heel vaak grote verbeteringen op de ondergrens oplevert.

De ondergrens δC heeft een elementair karakter en is een interessant studie-object—niet alleen als
boombreedte-ondergrens. De parameter δC is NP -moeilijk te berekenen. Voor een speciale klasse
van grafen, de cografen, bekijken we in Hoofdstuk 5 hoe δC wel efficiënt berekend kan worden.
In dit hoofdstuk ontwikkelen wij daarvoor een methode die gebaseerd is op dynamisch program-
meren. Cografen kunnen worden gerepresenteerd door een boomstructuur (een zogenaamde ‘cotree’)
waarvan ons dynamisch programmeer-algoritme gebruik maakt. We bewijzen dat de looptijd van het
algoritme polynomiaal is.

In de Hoofdstukken 6 en 7 bekijken we een ander onderwerp, namelijk het berekenen van de
netwerkbetrouwbaarheid (voor grafen met begrensde boombreedte). Aan het begin van Hoofdstuk
6 geven we het klassieke model voor netwerkbetrouwbaarheid. Daarna specificeren we ons eigen
model: Voor elke knoop v van het netwerk is er een rationeel getal p(v), dat de betrouwbaarheid van
deze knoop aangeeft, oftewel die de kans aangeeft dat deze knoop in het netwerk voorhanden is (niet
stukgegaan is). Alle knopen kunnen onafhankelijk van elkaar stuk gaan. We nemen aan dat alle kanten
perfect betrouwbaar zijn. Dit is geen beperking, omdat we niet-perfecte kanten kunnen simuleren
door niet-perfecte knopen, door deze kanten onder te verdelen. Het netwerk dat uit alle niet-kapotte

Samenvatting 141

knopen (en kanten) bestaat noemen we het overlevende deelnetwerk. In ons model hebben we twee
verzamelingen S (‘servers’) en L (‘clients’) van speciale knopen. Verder geven we in dit hoofdstuk
een lijst met interessante netwerkbetrouwbaarheidsproblemen, zoals ‘Wat is de kans dat elke client
verbonden is aan tenminste één server in het overlevende deelnetwerk?’ of ‘Wat is het verwachte
aantal componenten in het overlevende deelnetwerk met tenminste één server?’ Van alle vragen in de
lijst tonen we aan dat ze #P -moeilijk te beantwoorden zijn voor algemene grafen.

In Hoofdstuk 7 beperken we ons tot grafen met begrensde boombreedte. We tonen aan dat vele
van de netwerkbetrouwbaarheidsproblemen uit Hoofdstuk 6 efficiënt oplosbaar zijn. We beschrijven
een methode die op dynamisch programmeren gebaseerd is en gebruiken een boomdecompositie als
onderliggende structuur voor het dynamisch programmeren. Op die manier krijgen we een framework
waarmee we de vragen uit Hoofdstuk 6 kunnen beantwoorden. De looptijd van ons algoritme hangt in
sterke mate af van het probleem dat we willen oplossen. Hoe minder informatie we tijdens het bereke-
ningsproces moeten bewaren om uiteindelijk het juiste resultaat te krijgen, hoe korter de looptijd van
ons algoritme. De twee vragen ‘Wat is de kans dat elke client verbonden is aan tenminste één server
in het overlevende deelnetwerk?’ en ‘Wat is het verwachte aantal componenten in het overlevende
deelnetwerk met tenminste één server?’ kunnen bijvoorbeeld worden opgelost in een tijd die lineair
in het formaat van het netwerk is, maar meestal tenminste exponentieel in de boombreedte van het
netwerk. Het hele framework is praktisch voornamelijk toepasbaar op grafen met kleine boombreedte.

Curriculum Vitae

Thomas Wolle was born on 29th October 1975 in Gera, Germany. He got his degree in Computer Sci-
ence from the Friedrich-Schiller-Universität Jena in 2001. In the same year, he started as a PhD student
(AIO) at the Institute for Information and Computing Sciences of Utrecht University in Utrecht, The
Netherlands. In 2005, he completed this thesis there.

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Algebra. Fac-
ulty of Mathematics and Computing Science, TUE. 1996-
01

A.M. Geerling. Transformational Development of Data-
Parallel Algorithms. Faculty of Mathematics and Computer
Science, KUN. 1996-02

P.M. Achten. Interactive Functional Programs: Models,
Methods, and Implementation. Faculty of Mathematics and
Computer Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search. Faculty of
Mathematics and Computing Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation of Functional
Languages on Parallel Machines with Distrib. Memory.
Faculty of Mathematics and Computer Science, KUN.
1996-05

D. Alstein. Distributed Algorithms for Hard Real-Time
Systems. Faculty of Mathematics and Computing Science,
TUE. 1996-06

J.H. Hoepman. Communication, Synchronization, and
Fault-Tolerance. Faculty of Mathematics and Computer
Science, UvA. 1996-07

H. Doornbos. Reductivity Arguments and Program Con-
struction. Faculty of Mathematics and Computing Science,
TUE. 1996-08

D. Turi. Functorial Operational Semantics and its Deno-
tational Dual. Faculty of Mathematics and Computer Sci-
ence, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Circuits. Faculty
of Mathematics and Computing Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Specification For-
malism. Faculty of Mechanical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in Lambda Calculus
and its Relation to Type Inference. Faculty of Mathematics
and Computing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Partition Refine-
ment for Model Checking. Faculty of Mathematics and
Computing Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities in Semantics.
Faculty of Mathematics and Computer Science, VUA.
1996-14

B.L.E. de Fluiter. Algorithms for Graphs of Small
Treewidth. Faculty of Mathematics and Computer Science,
UU. 1997-01

W.T.M. Kars. Process-algebraic Transformations in Con-
text. Faculty of Computer Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data Types. Faculty
of Mathematics and Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in Logic and
Mathematics. Faculty of Mathematics and Computing Sci-
ence, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Explicit Sub-
stitution. Faculty of Mathematics and Computing Science,
TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra. Faculty of
Mathematics and Computing Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional Approach to Syntax
and Typing. Faculty of Mathematics and Informatics, KUN.
1997-07

A.W. Heerink. Ins and Outs in Refusal Testing. Faculty of
Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-Event Simulator
for Systems Engineering. Faculty of Mechanical Engineer-
ing, TUE. 1998-02

J. Verriet. Scheduling with Communication for Multipro-
cessor Computation. Faculty of Mathematics and Com-
puter Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-Power
80C51 Microcontroller. Faculty of Mathematics and Com-
puting Science, TUE. 1998-04

146 Titles in the IPA Dissertation Series

A.A. Basten. In Terms of Nets: System Design with Petri
Nets and Process Algebra. Faculty of Mathematics and
Computing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with Laws and Sub-
typing – A Relational Model. Faculty of Mathematics and
Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic Unification-based
Parsing. Faculty of Computer Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation of Surface
Processes. Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolutionary
Search. Faculty of Mathematics and Natural Sciences, UL.
1999-04

E.I. Barakova. Learning Reliability: a Study on Indecisive-
ness in Sample Selection. Faculty of Mathematics and Nat-
ural Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization in Real-Time
Distributed Databases. Faculty of Mathematics and Com-
puting Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart: Syntax and Se-
mantics. Faculty of Mathematics and Computing Science,
TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfiability prob-
lems. Faculty of Mathematics and Computing Science,
TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols with For-
mal Methods. Faculty of Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for Timed and
Stochastic Systems. Faculty of Computer Science, UT.
1999-10

G. Fábián. A Language and Simulator for Hybrid Systems.
Faculty of Mechanical Engineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts and Proof
Rules. Faculty of Mathematics and Computing Science,
TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural Predic-
tion System. Faculty of Mathematics and Natural Sciences,
RUG. 1999-13

J. Saraiva. A Purely Functional Implementation of At-
tribute Grammars. Faculty of Mathematics and Computer
Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Parallel Pro-
gram Construction. Faculty of Mathematics and Comput-
ing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft in the Dutch
Republic. Faculty of Mathematics and Computer Science,
UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified approach to the
verification of distributed algorithms. Faculty of Mathemat-
ics and Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the Design of Delay-
Insensitive Communicating Processes. Faculty of Mathe-
matics and Natural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer Aided Verification
of Protocols. Faculty of Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the MathSpad Edi-
tor. Faculty of Mathematics and Computing Science, TUE.
2000-05

J. Fey. Design of a Fruit Juice Blending and Packaging
Plant. Faculty of Mechanical Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving Correct Pro-
grams. Faculty of Mathematics and Computing Science,
TUE. 2000-07

P.A. Olivier. A Framework for Debugging Heterogeneous
Applications. Faculty of Natural Sciences, Mathematics
and Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specification Language. Fac-
ulty of Mathematics and Natural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search Discover-
ing and Representing Search Space Structure. Faculty of
Mathematics and Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a computational ap-
proach to knowledge, observation and communication.
Faculty of Mathematics and Computing Science, TU/e.
2001-02

M. Huisman. Reasoning about Java programs in higher
order logic using PVS and Isabelle. Faculty of Science,
KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes through
Structured Reflection. Faculty of Mathematics and Comput-
ing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax and seman-
tics. Faculty of Sciences, Division of Mathematics and
Computer Science, VUA. 2001-05

R. van Liere. Studies in Interactive Visualization. Faculty
of Natural Sciences, Mathematics and Computer Science,
UvA. 2001-06

A.G. Engels. Languages for Analysis and Testing of Event
Sequences. Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes. Faculty
of Mathematics and Natural Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analysis of Data in
Environmental Epidemiology: A Case-study into Acute Ef-
fects of Air Pollution Episodes. Faculty of Mathematics and
Natural Sciences, UL. 2001-09

Titles in the IPA Dissertation Series 147

T.C. Ruys. Towards Effective Model Checking. Faculty of
Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concurrency con-
trol and recovery protocols. Faculty of Mathematics and
Computing Science, TU/e. 2001-11

M.D. Oostdijk. Generation and presentation of formal
mathematical documents. Faculty of Mathematics and
Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A simulation
approach using χ. Faculty of Mechanical Engineering,
TU/e. 2001-13

D. Bošnački. Enhancing state space reduction techniques
for model checking. Faculty of Mathematics and Comput-
ing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelligent Data
Analysis: theoretical and experimental aspects. Faculty of
Mathematics and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specification and Anal-
ysis of Industrial Systems. Faculty of Mathematics and
Computer Science and Faculty of Mechanical Engineering,
TU/e. 2002-02

T. Kuipers. Techniques for Understanding Legacy Soft-
ware Systems. Faculty of Natural Sciences, Mathematics
and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Process Algebra. Fac-
ulty of Natural Sciences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable Construction: Algo-
rithms and Complexity. Faculty of Mathematics and Com-
puter Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification of Proba-
bilistic, Real-time and Parametric Systems. Faculty of Sci-
ence, Mathematics and Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular Computing. Faculty of
Mathematics and Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and Cost-
Optimality in Model Checking of Timed and Hybrid Sys-
tems. Faculty of Science, Mathematics and Computer Sci-
ence, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Packing. Faculty
of Mathematics and Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Filtering: Concepts and
Algorithms. Faculty of Mathematics and Natural Sciences,
UL. 2002-10

M.B. van der Zwaag. Models and Logics for Process Alge-
bra. Faculty of Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions of Semantical
Models. Faculty of Sciences, Division of Mathematics and
Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Systems. Faculty of Nat-
ural Sciences, Mathematics, and Computer Science, UvA.
2002-13

J.I. van Hemert. Applying Evolutionary Computation to
Constraint Satisfaction and Data Mining. Faculty of Math-
ematics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra. Faculty of
Mathematics and Computer Science, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL. Faculty of Mathemat-
ics and Computer Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage for Video on
Demand. Faculty of Mathematics and Computer Science,
TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Techniques for
component composition and construction. Faculty of Nat-
ural Sciences, Mathematics, and Computer Science, UvA.
2003-02

J.M.W. Visser. Generic Traversal over Typed Source Code
Representations. Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Faculty of Mathe-
matics and Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and Verification in Process Al-
gebras with Data and Timing. Faculty of Mathematics and
Computer Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of Catalytic Re-
actions. Faculty of Mathematics and Computer Science,
TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of Tertiary Storage.
Faculty of Electrical Engineering, Mathematics & Com-
puter Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process Annotation – CoM-
PAs. Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the Dynamics of Object-
based Software: a Foundational Approach. Faculty of Elec-
trical Engineering, Mathematics & Computer Science, UT.
2003-09

M.H. ter Beek. Team Automata – A Formal Approach to
the Modeling of Collaboration Between System Compo-
nents. Faculty of Mathematics and Natural Sciences, UL.
2003-10

D.J.P. Leijen. The λ Abroad – A Functional Approach to
Software Components. Faculty of Mathematics and Com-
puter Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios for the Differenc-
ing Method. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-01

148 Titles in the IPA Dissertation Series

G.I. Jojgov. Incomplete Proofs and Terms and Their Use in
Interactive Theorem Proving. Faculty of Mathematics and
Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing – Splicing and
Membrane systems. Faculty of Mathematics and Natural
Sciences, UL. 2004-03

S. Maneth. Models of Tree Translation. Faculty of Mathe-
matics and Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and Browsing for Home En-
vironments. Faculty of Mathematics and Computer Science
and Faculty of Industrial Design, TU/e. 2004-05

F. Bartels. On Generalised Coinduction and Probabilis-
tic Specification Formats. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analysis: a Type-
Theoretical Formalization and Applications. Faculty of Sci-
ence, Mathematics and Computer Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bargaining Games:
An Evolutionary Investigation of Fundamentals, Strategies,
and Business Applications. Faculty of Technology Manage-
ment, TU/e. 2004-08

N. Goga. Control and Selection Techniques for the Auto-
mated Testing of Reactive Systems. Faculty of Mathematics
and Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic: Representations,
Algorithms and Proofs. Faculty of Science, Mathematics
and Computer Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Faculty of Mathemat-
ics and Computer Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Algorithms for Car
Navigation. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Processing Us-
ing Conditionally Guaranteed Budgets. Faculty of Mathe-
matics and Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed Systems. Fac-
ulty of Sciences, Division of Mathematics and Computer
Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based Economics. Fac-
ulty of Technology Management, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Estimation Using a
Single Base Station. Faculty of Mathematics and Computer
Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verification and Verified Dis-
tribution. Faculty of Sciences, Division of Mathematics and
Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-oriented Edi-
tor for Structured Documents. Faculty of Mathematics and
Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quantitative Prediction of
Quality Attributes for Component-Based Software Archi-
tectures. Faculty of Mathematics and Computer Science,
TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Faculty of Math-
ematics and Computer Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervisory Machine Con-
trol by Predictive-Reactive Scheduling. Faculty of Mechan-
ical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof System for Multi-
threaded Java -Theory and Tool Support- . Faculty of Math-
ematics and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling in Bone Tissue.
Faculty of Biomedical Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Control - Expression
and Enforcement. Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-free Parallel Algo-
rithms. Faculty of Mathematics and Computing Sciences,
RUG. 2005-04

H.M.A. van Beek. Specification and Analysis of Internet
Applications. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Architecting - A Sys-
tematic Approach to Developing Future-Proof System Ar-
chitectures. Faculty of Mathematics and Computing Sci-
ences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Techniques in Secu-
rity and Fault-Tolerance. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2005-07

I. Kurtev. Adaptability of Model Transformations. Faculty
of Electrical Engineering, Mathematics & Computer Sci-
ence, UT. 2005-08

T. Wolle. Computational Aspects of Treewidth - Lower
Bounds and Network Reliability. Faculty of Science, UU.
2005-09

