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Abstract. Every lower bound for treewidth can be extended by taking
the maximum of the lower bound over all subgraphs or minors. This ex-
tension is shown to be a very vital idea for improving treewidth lower
bounds. In this paper, we investigate a total of nine graph parameters,
providing lower bounds for treewidth. The parameters have in common
that they all are the vertex-degree of some vertex in a subgraph or minor
of the input graph. We show relations between these graph parameters
and study their computational complexity. To allow a practical compar-
ison of the bounds, we developed heuristic algorithms for those param-
eters that are NP -hard to compute. Computational experiments show
that combining the treewidth lower bounds with minors can considerably
improve the lower bounds.

1 Introduction

Many combinatorial optimisation problems take a graph as part of the input.
If this graph belongs to a specific class of graphs, typically more efficient al-
gorithms are available to solve the problem, compared to the general case. In
case of trees for example, many NP -hard optimisation problems can be solved
in polynomial time. Over the last decades, it has been shown that many NP -
hard combinatorial problems can be solved in polynomial time for graphs with
treewidth bounded by a constant. Until recently, it was assumed that these re-
sults were of theoretical interest only. By means of the computation of so-called
exact inference in probabilistic networks [17] as well as the frequency assign-
ment problem [15] in cellular wireless networks, it has been shown that such an
algorithm to compute the optimal solution can be used in practice as well.
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Polynomial time algorithms for solving combinatorial problems on a graph
of bounded treewidth consist of two steps: (i) the construction of a tree decom-
position of the graph with width as small as possible, and (ii) the application
of dynamic programming on the tree decomposition to find the optimal solution
of the combinatorial problem. Whereas the first step can be applied without
knowledge of the application, the second step requires the development of an
algorithm tailor-made for the specific application.

To exploit the full potential of tree decomposition approaches for as many
combinatorial problems as possible, the first step is of fundamental importance.
The smallest possible width of a tree decomposition is known as the treewidth of
the graph. Computing the treewidth is however NP -hard [1]. To advance towards
tree decompositions with close-to-optimal width, research in recent years has
been carried out on practical algorithms for reduction and decomposition of the
input graph [5, 6, 11], upper bounds [10, 9, 14], lower bounds [4, 7, 10, 18, 20], and
exact algorithms (e.g. [12]).

In this paper, we research treewidth lower bounds that are based on the de-
gree of specific vertices. Good treewidth lower bounds can be utilised to decrease
the running time of branch-and-bound algorithms (see e.g. [12]). The better the
lower bounds, the bigger the branches that can be pruned in a branch-and-bound
method. Furthermore, treewidth lower bounds are useful to estimate the running
times of dynamic programming methods that are based on tree decompositions.
Such methods have running times that are typically exponential in the treewidth.
Therefore, a large lower bound on the treewidth of a graph implies only little
hope for an efficient dynamic programming algorithm based on a tree decompo-
sition of that graph. In addition, lower bounds in connection with upper bounds
help to assess the quality of these bounds.

Every lower bound for treewidth can be modified by taking the maximum
of the lower bound over all subgraphs or minors. In [7, 8] this idea was used to
obtain considerable improvements on two lower bounds: the minimum degree of
a graph and the MCSLB lower bound by Lucena [18].

In this paper, we extend our research efforts to improve the quality of fur-
ther known lower bounds in this way. One lower bound for treewidth is given by
the second smallest degree, another one by the minimum over all non-adjacent
pairs of vertices of the maximum degree of the vertices (cf. Ramachandra-
murthi [20]). Altogether, we examine nine parameters (defined in Section 2)
and determine some relationships between them (see Section 3.1). We show
that the second smallest degree over all subgraphs is computable in polyno-
mial time, whereas the parameters for other combinations are NP -hard to com-
pute (see Section 3.2). In this extended abstract, however, we omit full proofs.
For the parameters that are NP -hard to compute, we develop several algo-
rithms in Section 4.2 to obtain treewidth lower bounds heuristically. A compu-
tational evaluation (Section 4.3 and 4.4) of the algorithms shows that the heuris-
tics where we combine a lower bound with edge contraction outperforms other
strategies.
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2 Preliminaries and Graph Parameters

Throughout the paper G = (V,E) denotes a simple undirected graph. Unless
otherwise stated, n(G) (or simply n) denotes the number of vertices in G, i.e. n :=
|V |, and m(G) (or simply m) denotes the number of edges m := |E|. Most
of our terminology is standard graph theory/algorithm terminology. The open
neighbourhood NG(v) or simply N(v) of a vertex v ∈ V is the set of vertices
adjacent to v in G. As usual, the degree in G of vertex v is dG(v) or simply d(v),
and we have d(v) = |N(v)|. N(S) for S ⊆ V denotes the open neighbourhood of
S, i.e. N(S) =

⋃
s∈S N(s) \ S.

Subgraphs and Minors. After deleting vertices of a graph and their incident
edges, we get an induced subgraph. A subgraph is obtained, if we additionally
allow deletion of edges. (We use G′ ⊆ G to denote that G′ is a subgraph of G.)
If we furthermore allow edge-contractions, we get a minor (denoted as G′ � G,
if G′ is a minor of G). Contracting edge e = {u, v} in the graph G = (V,E)
is the operation that introduces a new vertex ae and new edges such that ae is
adjacent to all the neighbours of u and v, and deletes vertices u and v and all
edges incident to u or v.

Treewidth. The notions treewidth and tree decomposition were introduced by
Robertson and Seymour in [21]. A tree decomposition of G = (V,E) is a pair
({Xi | i ∈ I}, T = (I, F )), with {Xi | i ∈ I} a family of subsets of V and T
a tree, such that each of the following holds:

⋃
i∈I Xi = V ; for all {v, w} ∈ E,

there is an i ∈ I with v, w ∈ Xi; and for all i0, i1, i2 ∈ I: if i1 is on the path
from i0 to i2 in T , then Xi0 ∩ Xi2 ⊆ Xi1 . The width of tree decomposition
({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1. The treewidth tw(G) of G is the
minimum width among all tree decompositions of G. The following lemma is
well known and an important fact for proving the parameters, considered in this
paper, to be treewidth lower bounds.

Lemma 1 (see e.g. [3]). If G′ is a minor of G, then tw(G′) ≤ tw(G).

Graph Parameters. We consider a number of graph parameters in this paper,
all lower bounds on the treewidth of a graph, cf. Section 3. The minimum degree
δ of a graph G is defined as usual: δ(G) := minv∈V d(v)

The δ-degeneracy or simply the degeneracy δD of a graph G is defined in [2]
to be the minimum number s such that G can be reduced to an empty graph
by the successive deletion of vertices with degree at most s. It is easy to see
that this definition of the degeneracy is equivalent (see [24]) to the following
definition: δD(G) := maxG′{δ(G′) | G′ ⊆ G ∧ n(G′) ≥ 1} The treewidth of
G is at least its degeneracy (see also [14]). The δ-contraction degeneracy or
simply the contraction degeneracy δC of a graph G was first defined in [7]. In-
stead of deleting a vertex v of minimum degree, we contract it to a neighbour
u, i.e. we contract the edge {u, v}. This has been proven to be a very vital
idea for obtaining treewidth lower bounds [7, 8]. The contraction degeneracy
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is defined as the maximum over all minors G′ of G of the minimum degree:
δC(G) := maxG′{δ(G′) | G′ � G ∧ n(G′) ≥ 1}

Let be given an ordering v1, ..., vn of the vertices of G with n ≥ 2, such that
d(vi) ≤ d(vi+1), for all i ∈ {1, ..., n−1}. The second smallest degree δ2 of a graph
G is defined as: δ2(G) := d(v2) Note that it is possible that δ(G) = δ2(G). Similar
to the δ-degeneracy and δ-contraction-degeneracy we define the δ2-degeneracy
and δ2-contraction-degeneracy. The δ2-degeneracy δ2D of a graph G = (V,E)
with n ≥ 2 is defined as follows: δ2D(G) := maxG′{δ2(G′) | G′ ⊆ G ∧ n(G′) ≥
2} The δ2-contraction degeneracy δ2C of a graph G = (V,E) with n ≥ 2 is:
δ2C(G) := maxG′{δ2(G′) | G′ � G ∧ n(G′) ≥ 2}

In [19, 20], Ramachandramurthi introduced the parameter γR(G) of a graph
G and proved that this is a lower bound on the treewidth of G. γR(G) :=
min(n − 1,minv,w∈V,v �=w,{v,w}�∈E max(d(v), d(w))) Note that γR(G) = n − 1 if
and only if G is a complete graph on n vertices. Furthermore, note that γR(G) is
determined by a pair {v, w} �∈ E with max(d(v), d(w)) is as small as possible. We
say that {v, w} is a non-edge determining γR(G), and if d(v) ≤ d(w) then we say
that w is a vertex determining γR(G). Once again, we define the ‘degeneracy’ and
‘contraction degeneracy’ versions also for the parameter γR. The γR-degeneracy
γRD(G) of a graph G = (V,E) with n ≥ 2 is defined as follows: γRD(G) :=
maxG′{γR(G′) | G′ ⊆ G∧n(G′) ≥ 2} The γR-contraction degeneracy γRC(G) of
a graph G = (V,E) with n ≥ 2 is defined as: γRC(G) := maxG′{γR(G′) | G′ �
G ∧ n(G′) ≥ 2}.

3 Theoretical Results

3.1 Relationships Between the Parameters

Lemma 2. For a graph G = (V,E) with |V | ≥ 2, x ∈ {δ, δ2, γR} and X ∈
{D,C}, each of the following holds:

1. δ(G) ≤ δ2(G) ≤ γR(G) ≤ tw(G)
2. x(G) ≤ xD(G) ≤ xC(G) ≤ tw(G)
3. δX(G) ≤ δ2X(G) ≤ γRX(G) ≤ tw(G)
4. δ2X(G) ≤ δX(G) + 1
5. γRX(G) ≤ 2 · δ2X(G)

It follows directly from Lemma 2 that all the parameters defined in Section 2
are lower bounds for treewidth. Furthermore, we see that the gap between the
parameters δD and δ2D, and between δC and δ2C can be at most one (see
Lemma 2). In Section 3.2, we will see that δ2D can be computed in polynomial
time. Therefore, Lemma 2 gives us a 2-approximation algorithm for computing
the parameter γRD. Also in Section 3.2, we will see that γRD is NP -hard to
compute.

The next lemma shows some interesting properties of the parameter γR, when
given a vertex sequence sorted according to non-decreasing degree.
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Lemma 3. Let be given a graph G on n vertices with G �= Kn. Furthermore,
let be given an ordering v1, ..., vn of V (G), such that d(vi) ≤ d(vi+1), for all
i ∈ {1, ..., n−1}. We define j := min{i ∈ {1, ..., n} | ∃l ∈ {1, ..., i−1} : {vi, vl} �∈
E(G)}. Then we have:

1. d(vj) = γR(G)
2. v1, ..., vj−1 form a clique in G

3.2 Computational Complexity of the Parameters

A Bucket Data Structure

In this section, we briefly describe a data structure that can be used in many of
our algorithms. A more detailed description can be found in [24]. We extend the
standard adjacency-list data structure of a graph G = (V,E) in the following
way. We store in doubly linked lists the adjacent vertices for every vertex of the
graph, and we also use cross pointers for each edge {vi, vj} (i.e. a pointer between
vertex vi in the adjacency-list for vertex vj and vertex vj in the adjacency-list
for vertex vi). In addition to this advanced-adjacency-list, we create n = |V |
buckets that can be implemented by doubly-linked lists B0, ..., Bn−1. List Bd

contains exactly those vertices with degree d. We maintain a pointer p(v) for
every vertex v that points to the exact position in the list Bd that contains v
for the appropriate d.

Lemma 4 (see [24]). Let be given a graph G = (V,E) with n = |V | and
m = |E|. An algorithm performing a sequence of O(n) vertex deletions and
searches for a vertex with smallest or second smallest degree can be implemented
to use O(n + m) time.

Known Results

It is easy to see that δ(G) and δ2(G) can be computed in O(n + m) time. Also
the parameter γR(G) can be computed in O(n+m) time, see [19] or Section 4.1.
Interestingly enough, the definition of the degeneracy as in [2] (see also Section 2)
reflects an algorithm to compute this parameter: Successively delete a vertex of
minimum degree and return the maximum of the encountered minimum degrees.
Using the data structure described in this section, δD(G) can be computed in
time O(n + m). Computing δC is NP -hard as is shown in [7].

δ2D Is Computable in Polynomial Time

A strategy to compute δ2D is as follows. We can fix a vertex v of which we
suppose it will be the vertex of minimum degree in a subgraph G′ of G with
δ2(G′) = δ2D(G). Starting with the original graph, we successively delete a
vertex in V (H) \ {v} of smallest degree, where H is the current considered
subgraph of G (initially: H = G). Since we do not know whether our choice of
v was optimal, doing this for all vertices v ∈ V leads to a correct algorithm to
compute δ2D(G). Using the bucket data structure, described above, this method
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Fig. 1. An overview of some theoretical results

can be implemented to take O(n ·m) time. We call this algorithm Delta2D. The
following pseudo-code makes this algorithm more precise.

Algorithm Delta2D

1 delta2D := 0
2 for each v ∈ V do

3 H := G
4 repeat

5 if δ2(H) > delta2D then delta2D := δ2(H) endif

6 V ∗ := V (H) \ {v}
7 let u ∈ {w ∈ V ∗ | � ∃w′ ∈ V ∗ : dH(w′) < dH(w)}
8 H := H[V (H) \ {u}]
9 until |V (H)| = 1
10 endfor

11 return delta2D

Lemma 5. Algorithm Delta2D computes δ2D(G) and can be implemented to
run in O(n · m) time, for a given connected graph G = (V,E) with |V | ≥ 2.

NP -completeness Results

Here, we will state the computational hardness of the decision problems corre-
sponding to the parameters γRD, γRC and δ2C.

Theorem 1. Let G be a graph, G′ be a bipartite graph and k be an integer.
Each of the following is NP -complete to decide: γRD(G) ≥ k, γRC(G′) ≥ k and
δ2C(G) ≥ k.

Figure 1 represents some of the theoretical results. A thick line between
two parameters indicates that the parameter below is smaller or equal to the
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parameter above, as stated by Lemma 2. The thin line marks the border between
polynomial computability and NP -hardness of the corresponding parameters
(see Theorem 1 and other results in Section 3.2).

4 Experimental Results

In this section, we describe exact and heuristic algorithms, which we used in our
experiments to compute the corresponding parameters.

4.1 Exact Algorithms

An implementation of algorithms to compute δ and δ2 is straightforward. It is
obvious that, in linear time, both parameters can be computed exactly. The
parameters δD and δ2D were computed as described in Section 3.2. Ramachan-
dramurthi shows in [19] that γR can be computed in O(n + m) time. In our
experiments, we use a different algorithm that does not use an adjacency ma-
trix. See the full version of this article ([16]) for more details.

4.2 Heuristics

For the parameters that are NP -hard to compute, we have developed heuristics
some of which are based on the polynomial counterparts.

γR-degeneracy: For the γRD, we developed three heuristics based on the follow-
ing observation: Let v1, ..., vn be a sorted sequence of the vertices according to
non-decreasing degree in G, and let γR(G) be determined by vj for some j > 1
(see Lemma 3). Thus, vj is not adjacent to some vertex vk with k < j, whereas
v1, ..., vj−1 induce a clique in G. Let V ′ be the set of all vertices vi with i < j
and {vi, vj} �∈ E. Now, for any subgraph G′ ⊂ G with ({vj} ∪ V ′) ⊆ V (G′), we
have that γR(G′) ≤ γR(G). Hence, only subgraphs without either vj or V ′ are
of further interest. Based on this observation, we implemented two heuristics.
In the heuristic γRD-left, we remove the vertices in V ′ (the vertices that are
more to the left in the sequence) from the graph and continue. Whereas in the
heuristic γRD-right, we delete the vertex vj (the vertex that is more to the right
in the sequence) and go to the next iteration.

δ-contraction degeneracy: For computing lower bounds for δC, we have exam-
ined various strategies for contraction in [7]. The most promising one has been
to recursively contract a vertex of minimum degree with a neighbour that has
the least number of common neighbours (denoted as the least-c strategy).

δ2-contraction degeneracy: For δ2C we implemented three heuristic algorithms.
The first one, all-v is based on the polynomial time implementation for δ2D.
We fix all vertices once at a time and perform the δC heuristic (with least-c
strategy) on the rest of the graph. The best second smallest degree recorded
provides a lower bound on δ2C. The other two δ2C-heuristics are based on
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the algorithms for δC. Instead of recording the minimum degree we also can
record the second smallest degree (Maximum Second Degree with contraction,
abbreviated as MSD+). If we contract a vertex of minimum degree with one
of its neighbours (according to the least-c strategy), we obtain the algorithm
MSD+1. If the vertex of second smallest degree is contracted with one of its
neighbours (also according to the least-c strategy), we obtain the algorithm
MSD+2.

γR-contraction degeneracy: For γRC the same strategies as for γRD have been
implemented. The only difference is that instead of removing all vertices in V ′ or
vj , we contract each of the vertices with a neighbour that is selected according
to the least-c strategy. Inspired by the good results of the ‘δ2C all-v’ heuristic,
we furthermore implemented the all-v strategy as described above also for the
γR-contraction degeneracy. The difference is that instead of computing δ2 of each
obtained minor, we now compute γR.

4.3 Experiments

The algorithms and heuristics described above have been tested on a large num-
ber of graphs from various application areas such as probabilistic networks,
frequency assignment, travelling salesman problem and vertex colouring (see
e.g. [7, 8] for details). All algorithms have been written in C++, and the com-
putations have been carried out on a Linux operated PC with a 3.0 GHz Intel
Pentium 4 processor. Many of the tested graphs as well as most of the exper-
imental results on their treewidth (from, among others, [7, 8] and this article)
can be obtained from [23].

In the tables below, we present the results for some selected instances only.
The result of these representative instances reflect typical behaviour for the
whole set of instances. The best known upper bound for treewidth (see [14]) is
reported in the column with title UB. Columns headed by LB give treewidth
lower bounds in the terms of the according parameter or a lower bound for the
parameter. The best lower bounds in the tables are highlited in bold font. Values
in columns headed by CPU are running times in seconds.

Table 1 shows the sizes of the graphs, and the results obtained for the
treewidth lower bounds without contraction. These bounds are the exact pa-
rameters apart from the values for the two γRD-heuristics. As the computation
times for δ, δ2 and γR are negligible, we omit them in the table. Also the δD
can be computed within a fraction of a second. The computational complexity
of δ2D is O(n) larger than the one of δD which is reflected in the CPU times
for this parameter.

Table 2 shows the results for the same graphs as in Table 1. Furthermore, in
Table 2, we give the treewidth lower bounds according to the parameters that
involve contraction. For δC, we only give the results of the least-c strategy, as
this seems to be the most promising one (see [7]). For δ2C and γRC, the results
of the heuristics as described in Section 4.2 are shown.
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Table 1. Graph sizes, upper bounds and lower bounds without contractions

instance size δ δ2 γR δD δ2D γRD
left right

|V | |E| UB LB LB LB LB CPU LB CPU LB CPU LB CPU

link 724 1738 13 0 0 0 4 0.01 4 3.67 4 0.01 4 0.01
munin1 189 366 11 1 1 1 4 0.00 4 0.23 4 0.00 4 0.00
munin3 1044 1745 7 1 1 1 3 0.01 3 6.70 3 0.02 3 0.01
pignet2 3032 7264 135 2 2 2 4 0.04 4 69.87 4 0.04 4 0.05
celar06 100 350 11 1 1 1 10 0.01 11 0.08 11 0.00 10 0.00
celar07pp 162 764 18 3 3 3 11 0.01 12 0.27 12 0.00 11 0.01
graph04 200 734 55 3 3 3 6 0.01 6 0.36 6 0.00 6 0.00
rl5934-pp 904 1800 23 3 3 3 3 0.01 3 5.33 3 0.01 3 0.01
school1 385 19095 188 1 1 1 73 0.04 74 7.89 75 0.03 73 0.03
school1-nsh 352 14612 162 1 1 1 61 0.02 62 5.69 62 0.03 61 0.02
zeroin.i.1 126 4100 50 28 29 32 48 0.00 48 0.58 50 0.01 50 0.01

Table 2. Treewidth lower bounds with contraction

instance δC δ2C γRC
least-c all-v MSD+1 MSD+2 left right all-v

LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

link 11 0.02 12 17.27 11 0.02 11 0.03 11 0.02 12 0.02 12 150.13
munin1 10 0.01 10 0.58 10 0.00 10 0.00 9 0.01 10 0.00 10 3.07
munin3 7 0.01 7 13.20 7 0.01 7 0.02 7 0.01 7 0.02 7 312.92
pignet2 38 0.11 40 369.00 39 0.12 39 0.14 38 0.12 39 0.12 40 11525.1
celar06 11 0.00 11 0.16 11 0.01 11 0.00 11 0.00 11 0.00 11 0.30
celar07pp 15 0.00 15 0.77 15 0.01 15 0.01 15 0.00 15 0.01 15 2.08
graph04 20 0.01 20 2.72 20 0.01 19 0.01 20 0.02 19 0.01 21 4.78
rl5934-pp 5 0.02 6 36.12 5 0.02 5 0.03 5 0.03 6 0.02 6 221.72
school1 122 0.48 124 180.30 123 0.48 122 0.51 122 0.45 122 0.49 125 215.35
school1-nsh 106 0.37 108 173.51 106 0.35 107 0.38 104 0.34 106 0.36 108 146.19
zeroin.i.1 50 0.03 50 6.25 50 0.03 50 0.03 50 0.03 50 0.03 50 5.43

4.4 Discussion

The results of algorithms and heuristics that do not involve edge-contractions
(Table 1) show that the degeneracy lower bounds (i.e. the lower bounds involv-
ing subgraphs) are significantly better than the simple lower bounds, as could
be expected. Comparing the results for δD and δ2D, we see that in four cases we
have that δ2D = δD + 1. In the other seven cases δ2D = δD. Bigger gaps than
one between δD and δ2D are not possible (confirm Lemma 2). In some cases
other small improvements (compared to δD and δ2D) could be obtained by the
heuristics for γRD. The two γRD-heuristics are all comparable in value and run-
ning times. Apart from the running times for computing δ2D, the computation
times are in all cases marginal, which is desirable for methods involving com-
puting lower bounds many times (e.g. branch & bound). Even though the δ2D
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algorithm has much higher running times than the other algorithms in Table 1,
it is still much faster than some heuristics with contraction. Furthermore, we
expect that its running time could be improved by a more efficient implementa-
tion. No further investigations about parameters without contraction have been
carried out as the parameters with contraction are of considerably more interest.

We can see that when using edge-contractions, the treewidth lower bounds
can be significantly improved (compare Table 2 with Table 1). The results show
that values for δ2C are typically equal or only marginal better than the value for
δC. The same is true for γRC with respect to δ2C. The best results are obtained
by the most time consuming algorithms: δ2C and γRC with all-v strategy. By
construction of the heuristic for γRC with all-v strategy, it is clear that it is at
least as good as the heuristic for δ2C with all-v strategy. Sometimes, it is even
a little bit better. As in the case of the δ2D algorithm, the computation times
of the δ2C and γRC heuristics with all-v strategy could probably be improved
by more efficient implementations. The other strategies for δ2C and γRC are
comparable in value and running times. No clear trend between them could be
identified. In a few cases, we can observe that the gap between δC and δ2C
is more than one. This does not contradict Lemma 2, because the considered
values are not the exact values. Different strategies for heuristics can result in
different values with larger gaps between them. With the same argument, we
can explain that in a few cases lower bounds of one parameter that in theory is
at least as good as another parameter can be smaller than lower bounds of the
other parameter.

As said above, using γR instead of δ2 in the degeneracy and contraction
degeneracy heuristics, gives only small improvements in some cases. Therefore,
the ratio of two between those parameters as stated in Lemma 2 is far from
the ratios observed in our experiments. Proving a smaller ratio and/or finding a
graph with ratio as large as possible, remains a topic for further research.

It was already remarked in [7] that the δ-contraction degeneracy of a planar
graph can never be larger than 5. In fact, we have that δC(G) ≤ δ2C(G) ≤
γ(G)+5, where γ denotes the genus of a graph (see [24]). This behaviour can be
observed in our experiments, e.g. for the graph rl5934-pp, which is expected to
be nearly planar. However, the γR-contraction degeneracy might be larger than
γ(G) + 5.

5 Conclusions

In this article, we continued our research in [7] on degree-based treewidth lower
bounds, where we combined the minimum degree lower bound with subgraphs
and edge-contraction/minors. Here, we applied this combination to two other
treewidth lower bounds, namely the second smallest degree lower bound and the
Ramachandramurthi lower bound [19].

We obtained theoretical results showing how the parameters are related to
each other. We also examined the computational complexity of the parame-
ters. Here, it is interesting to note that all contraction degeneracy problems are
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NP -hard, while the degeneracy problems are polynomial, except for the γR-
degeneracy, which has been shown to be NP -hard.

In our experiments, we could observe potent improvements when compar-
ing the simple parameters with their degeneracy counterparts. An even bigger
improvement was achieved when edge-contractions were involved. Therefore, we
can conclude that the incorporation of contraction improves the lower bounds
for treewidth considerably. However, the added value of δ2C and γRC in com-
parison to δC is from a practical perspective marginal. The best lower bounds
for δ2C and γRC were obtained by heuristics with considerably long running
times. Hence, if the lower bound has to be computed frequently, e.g. within a
branch-and-bound algorithm, it is advisable to first compute a lower bound for
δC, and only in tight cases using a slower but hopefully better lower bound.

It remains an interesting topic to research other treewidth lower bounds that
can be combined with minors, in the hope to obtain large improvements. Further-
more, good lower bounds for graphs with bounded genus are desirable, because
lower bounds based on δ, δ2 or γR do not perform very well on such graphs
(see [24]). However, treewidth lower bounds for planar graphs (i.e. graphs with
genus zero) can be obtained e.g. by computing the branchwidth of the graph
(see [13, 22]).
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